-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvwaps_plot_build_save.py
201 lines (177 loc) · 6.32 KB
/
vwaps_plot_build_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import datetime
from typing import Callable, List, Optional, Set, Tuple
import pandas as pd
import plotly.graph_objects as go
from constants import ATR_SMOOTHING_N, DEFAULT_RESULTS_FILE
from misc import fill_is_min_max, get_chart_annotation_1d
def _add_last_min_max_dates(
input_df: pd.DataFrame, anchor_dates: Set[pd.Timestamp]
) -> Tuple[pd.DataFrame, Set[pd.Timestamp]]:
"""
Add dates of last min and max to the set of dates.
"""
df = input_df.copy()
if (
f"atr_{ATR_SMOOTHING_N}" not in df.columns
or "is_min" not in df.columns
or "is_max" not in df.columns
):
df = fill_is_min_max(df=df)
last_min_date = df[df["is_min"] == True].index.max() # pylint: disable=C0121
last_max_date = df[df["is_max"] == True].index.max() # pylint: disable=C0121
anchor_dates.update({last_min_date, last_max_date})
# NOTE return not only anchor_dates but also pd.DataFrame,
# because you may want later to use somewhere
# the new columns is_min, is_max, atr_{ATR_SMOOTHING_N}
return df, anchor_dates
def _preprocess_anchor_dates(
anchor_dates: List[str],
) -> Tuple[Set[pd.Timestamp], Optional[pd.Timestamp]]:
"""
1. Convert a list of strings to a list of Timestamps.
2. Search for the x-marked minimum threshold date.
"""
# NOTE If an element with anchor_date[0] == "x" is found
# in the anchor_dates list, it is assigned to min_anchor_date.
# Otherwise, min_anchor_date remains None.
# The benefits of this feature are explained in the ReadMe doc.
min_anchor_date = None
for anchor_date in anchor_dates:
if isinstance(anchor_date, datetime.datetime):
continue
if anchor_date[0] == "x":
min_anchor_date = pd.to_datetime(anchor_date[1:])
anchor_points = [
(
anchor_date[1:]
if not isinstance(anchor_date, datetime.datetime) and anchor_date[0] == "x"
else anchor_date
)
for anchor_date in anchor_dates
]
anchor_points_ts: List[pd.Timestamp] = [
(
pd.to_datetime(anchor_date)
if not isinstance(anchor_date, datetime.datetime)
else anchor_date
)
for anchor_date in anchor_points
]
return set(anchor_points_ts), min_anchor_date
def vwaps_plot_build_save(
input_df: pd.DataFrame,
anchor_dates: List[str],
chart_title: str = "",
chart_annotation_func: Callable = get_chart_annotation_1d,
add_last_min_max: bool = False,
file_name: str = DEFAULT_RESULTS_FILE,
print_df: bool = True,
hide_extended_hours: bool = False,
) -> None:
"""
1. Transform every element of anchor_dates to pd.Timestamp.
2. Add a new column with a typical price.
3. For each anchor date, create a column with Anchored VWAP.
4. Build a candlestick chart with all Anchored VWAPs and save it.
Add x before the desired date to make the chart start from that date.
For example, x2024-08-03 00:00:00 instead of 2024-08-03 00:00:00.
By default, the chart will start from the minimum date in the anchor_dates list.
See example in the readme.
"""
df = input_df.copy()
# Otherwise, TypeError: Invalid comparison between
# dtype=datetime64[ns, America/New_York] and Timestamp
df.index = df.index.tz_convert(None) # type: ignore
anchor_points, min_threshold_point = _preprocess_anchor_dates(
anchor_dates=anchor_dates
)
if add_last_min_max:
df, anchor_points = _add_last_min_max_dates(
input_df=df, anchor_dates=anchor_points
)
if min_threshold_point is None:
min_threshold_point = min(anchor_points)
if "Typical" not in df.columns:
df["Typical"] = (df["Open"] + df["High"] + df["Low"] + df["Close"]) / 4
if "TypicalMultiplyVolume" not in df.columns:
df["TypicalMultiplyVolume"] = df["Typical"] * df["Volume"]
# Add anchored VWAP column for every date passed in anchor_points
counter = 0
for anchor_dt in anchor_points:
counter = counter + 1
df[f"A_VWAP_{counter}"] = (
df["TypicalMultiplyVolume"]
.where(df.index >= anchor_dt)
.groupby(df.index >= anchor_dt)
.cumsum()
/ df["Volume"]
.where(df.index >= anchor_dt)
.groupby(df.index >= anchor_dt)
.cumsum()
)
df = df[df.index >= min_threshold_point]
if print_df:
print(df[["Open", "High", "Low", "Close", "Volume", f"atr_{ATR_SMOOTHING_N}"]])
# df.to_excel("DF_before_plot_VWAP.xlsx")
del df["TypicalMultiplyVolume"]
del df["Typical"]
plot_data = [
go.Candlestick(
x=df.index,
open=df["Open"],
high=df["High"],
low=df["Low"],
close=df["Close"],
line=dict(width=1),
)
]
for counter in range(1, len(anchor_points) + 1):
plot_data.append(
go.Scatter(
x=df.index,
y=df[f"A_VWAP_{counter}"],
mode="lines",
),
)
fig = go.Figure(data=plot_data)
# fig.update_layout(
# margin=dict(l=10, r=10, t=10, b=10),
# )
# Add title to the chart if data is available
# and increase the top margin to fit the title
fig.update_layout(
title=chart_title,
title_x=0.5,
title_y=0.99,
margin=dict(l=10, r=10, t=20, b=10),
)
fig.add_annotation(
xref="x domain",
yref="y domain",
x=0.01,
y=0.99,
text=chart_annotation_func(df=df),
showarrow=False,
# row=1,
# col=1,
)
fig.update_xaxes(
rangeslider_visible=False,
rangebreaks=[
dict(bounds=["sat", "mon"]), # hide weekends, Saturday to before Monday
],
)
if hide_extended_hours and (input_df.attrs["interval"] != "1d"):
fig.update_xaxes(
rangebreaks=[
dict(
# NOTE You may have to adjust these bounds for hours
bounds=[21, 13.5],
pattern="hour",
), # hide hours outside of trading hours, in my case 21:00-13:30
],
)
fig.update_layout(showlegend=False)
# NOTE it requires kaleido package,
# see https://stackoverflow.com/a/59819140/3139228
fig.write_image(file_name)