-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsampling.py
234 lines (199 loc) · 8.34 KB
/
sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
from torch.distributions import Distribution, Beta
import numpy as np
def sample_actions(env, model, states):
# states is a tensor of shape (n, dim)
batch_size = states.shape[0]
out = model.to_dist(states)
if isinstance(out[0], Distribution): # s0 input
dist_r, dist_theta = out
samples_r = dist_r.sample(torch.Size((batch_size,)))
samples_theta = dist_theta.sample(torch.Size((batch_size,)))
actions = (
torch.stack(
[
samples_r * torch.cos(torch.pi / 2.0 * samples_theta),
samples_r * torch.sin(torch.pi / 2.0 * samples_theta),
],
dim=1,
)
* env.delta
)
logprobs = (
dist_r.log_prob(samples_r)
+ dist_theta.log_prob(samples_theta)
- torch.log(samples_r * env.delta)
- np.log(np.pi / 2)
- np.log(env.delta) # why ?
)
else:
exit_proba, dist = out
exit = torch.bernoulli(exit_proba).bool()
exit[torch.norm(1 - states, dim=1) <= env.delta] = True
exit[torch.any(states >= 1 - env.epsilon, dim=-1)] = True
A = torch.where(
states[:, 0] <= 1 - env.delta,
0.0,
2.0 / torch.pi * torch.arccos((1 - states[:, 0]) / env.delta),
)
B = torch.where(
states[:, 1] <= 1 - env.delta,
1.0,
2.0 / torch.pi * torch.arcsin((1 - states[:, 1]) / env.delta),
)
assert torch.all(
B[~torch.any(states >= 1 - env.delta, dim=-1)]
>= A[~torch.any(states >= 1 - env.delta, dim=-1)]
)
samples = dist.sample()
actions = samples * (B - A) + A
actions *= torch.pi / 2.0
actions = (
torch.stack([torch.cos(actions), torch.sin(actions)], dim=1) * env.delta
)
logprobs = (
dist.log_prob(samples)
+ torch.log(1 - exit_proba)
- np.log(env.delta)
- np.log(np.pi / 2)
- torch.log(B - A)
)
actions[exit] = -float("inf")
logprobs[exit] = torch.log(exit_proba[exit])
logprobs[torch.norm(1 - states, dim=1) <= env.delta] = 0.0
logprobs[torch.any(states >= 1 - env.epsilon, dim=-1)] = 0.0
return actions, logprobs
def sample_trajectories(env, model, n_trajectories):
step = 0
states = torch.zeros((n_trajectories, env.dim), device=env.device)
actionss = []
trajectories = [states]
trajectories_logprobs = torch.zeros((n_trajectories,), device=env.device)
all_logprobs = []
while not torch.all(states == env.sink_state):
step_logprobs = torch.full((n_trajectories,), -float("inf"), device=env.device)
non_terminal_mask = torch.all(states != env.sink_state, dim=-1)
actions = torch.full(
(n_trajectories, env.dim), -float("inf"), device=env.device
)
non_terminal_actions, logprobs = sample_actions(
env,
model,
states[non_terminal_mask],
)
actions[non_terminal_mask] = non_terminal_actions.reshape(-1, env.dim)
actionss.append(actions)
states = env.step(states, actions)
trajectories.append(states)
trajectories_logprobs[non_terminal_mask] += logprobs
step_logprobs[non_terminal_mask] = logprobs
all_logprobs.append(step_logprobs)
step += 1
trajectories = torch.stack(trajectories, dim=1)
actionss = torch.stack(actionss, dim=1)
all_logprobs = torch.stack(all_logprobs, dim=1)
return trajectories, actionss, trajectories_logprobs, all_logprobs
def evaluate_backward_logprobs(env, model, trajectories):
logprobs = torch.zeros((trajectories.shape[0],), device=env.device)
all_logprobs = []
for i in range(trajectories.shape[1] - 2, 1, -1):
all_step_logprobs = torch.full(
(trajectories.shape[0],), -float("inf"), device=env.device
)
non_sink_mask = torch.all(trajectories[:, i] != env.sink_state, dim=-1)
current_states = trajectories[:, i][non_sink_mask]
previous_states = trajectories[:, i - 1][non_sink_mask]
difference_1 = current_states[:, 0] - previous_states[:, 0]
difference_1.clamp_(
min=0.0, max=env.delta
) # Should be the case already - just to avoid numerical issues
A = torch.where(
current_states[:, 0] >= env.delta,
0.0,
2.0 / torch.pi * torch.arccos((current_states[:, 0]) / env.delta),
)
B = torch.where(
current_states[:, 1] >= env.delta,
1.0,
2.0 / torch.pi * torch.arcsin((current_states[:, 1]) / env.delta),
)
dist = model.to_dist(current_states)
step_logprobs = (
dist.log_prob(
(
1.0
/ (B - A)
* (2.0 / torch.pi * torch.acos(difference_1 / env.delta) - A)
).clamp(1e-4, 1 - 1e-4)
).clamp_max(100)
- np.log(env.delta)
- np.log(np.pi / 2)
- torch.log(B - A)
)
if torch.any(torch.isnan(step_logprobs)):
raise ValueError("NaN in backward logprobs")
if torch.any(torch.isinf(step_logprobs)):
raise ValueError("Inf in backward logprobs")
logprobs[non_sink_mask] += step_logprobs
all_step_logprobs[non_sink_mask] = step_logprobs
all_logprobs.append(all_step_logprobs)
all_logprobs.append(torch.zeros((trajectories.shape[0],), device=env.device))
all_logprobs = torch.stack(all_logprobs, dim=1)
return logprobs, all_logprobs.flip(1)
def evaluate_state_flows(env, model, trajectories, logZ):
state_flows = torch.full(
(trajectories.shape[0], trajectories.shape[1]),
-float("inf"),
device=trajectories.device,
)
non_sink_mask = torch.all(trajectories != env.sink_state, dim=-1)
state_flows[non_sink_mask] = model(trajectories[non_sink_mask]).squeeze(-1)
state_flows[:, 0] = logZ
return state_flows[:, :-1]
if __name__ == "__main__":
from model import CirclePF, CirclePB, NeuralNet
from env import Box, get_last_states
env = Box(dim=2, delta=0.25)
model = CirclePF()
bw_model = CirclePB()
flow = NeuralNet(output_dim=1)
logZ = torch.zeros(1, requires_grad=True)
trajectories, actionss, logprobs, all_logprobs = sample_trajectories(env, model, 5)
bw_logprobs, all_bw_logprobs = evaluate_backward_logprobs(
env, bw_model, trajectories
)
exits = torch.full(
(trajectories.shape[0], trajectories.shape[1] - 1), -float("inf")
)
msk = torch.all(trajectories[:, 1:] != -float("inf"), dim=-1)
middle_states = trajectories[:, 1:][msk]
exit_proba, _ = model.to_dist(middle_states)
true_exit_log_probs = torch.zeros_like(exit_proba) # type: ignore
edgy_middle_states_mask = torch.norm(1 - middle_states, dim=-1) <= env.delta
other_edgy_middle_states_mask = torch.any(middle_states >= 1 - env.epsilon, dim=-1)
true_exit_log_probs[edgy_middle_states_mask] = 0
true_exit_log_probs[other_edgy_middle_states_mask] = 0
true_exit_log_probs[
~edgy_middle_states_mask & ~other_edgy_middle_states_mask
] = torch.log(
exit_proba[~edgy_middle_states_mask & ~other_edgy_middle_states_mask] # type: ignore
)
exits[msk] = true_exit_log_probs
exits = torch.cat([torch.zeros((trajectories.shape[0], 1)), exits], dim=1)
non_infinity_mask = all_logprobs != -float("inf")
_, indices = torch.max(non_infinity_mask.flip(1), dim=1)
indices = all_logprobs.shape[1] - indices - 1
new_all_logprobs = all_logprobs.scatter(1, indices.unsqueeze(1), -float("inf"))
all_log_rewards = torch.full(
(trajectories.shape[0], trajectories.shape[1] - 1), -float("inf")
)
log_rewards = env.reward(trajectories[:, 1:][msk]).log()
all_log_rewards[msk] = log_rewards
all_log_rewards = torch.cat(
[logZ * torch.ones((trajectories.shape[0], 1)), all_log_rewards], dim=1
)
preds = new_all_logprobs[:, :-1] + exits[:, 1:-1] + all_log_rewards[:, :-2]
targets = all_bw_logprobs + exits[:, :-2] + all_log_rewards[:, 1:-1]
flat_preds = preds[preds != -float("inf")]
flat_targets = targets[targets != -float("inf")]
loss = torch.mean((flat_preds - flat_targets) ** 2)