-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathloss.py
95 lines (79 loc) · 3.5 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import torch.nn as nn
from torch.nn.functional import binary_cross_entropy
class BinaryCrossEntropyLoss2d(nn.Module):
def __init__(self, weight=None, size_average=True):
super().__init__()
self.bce_loss = nn.BCELoss(weight, size_average)
def forward(self, inputs, targets):
return self.bce_loss(inputs, targets)
# DICE = 2 * Sum(PiGi) / (Sum(Pi) + Sum(Gi))
# Refer https://github.com/pytorch/pytorch/issues/1249 for Laplace/Additive smooth
class SoftDiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super().__init__()
def forward(self, inputs, targets):
smooth = 1.
num = targets.size(0) # number of batches
m1 = inputs.view(num, -1)
m2 = targets.view(num, -1)
intersection = (m1 * m2)
score = (2. * intersection.sum(1) + smooth) / (m1.sum(1) + m2.sum(1) + smooth)
dice = score.sum() / num
# three kinds of loss formulas: (1) 1 - dice (2) -dice (3) -torch.log(dice)
return 1. - dice
# Jaccard/IoU = Sum(PiGi) / (Sum(Pi) + Sum(Gi) - Sum(PiGi))
class IoULoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super().__init__()
def forward(self, inputs, targets):
smooth = 1.
num = targets.size(0) # number of batches
m1 = inputs.view(num, -1)
m2 = targets.view(num, -1)
intersection = (m1 * m2)
score = (intersection.sum(1) + smooth) / (m1.sum(1) + m2.sum(1) - intersection.sum(1) + smooth)
iou = score.sum() / num
# three kinds of loss formulas: (1) 1 - iou (2) -iou (3) -torch.log(iou)
return 1. - iou
class FocalLoss(nn.Module):
"""
Focal Loss for Dense Object Detection [https://arxiv.org/abs/1708.02002]
Digest the paper as below:
α, balances the importance of positive/negative examples
γ, focusing parameter that controls the strength of the modulating term
CE(pt) = −log(pt) ==> pt = exp(-CE)
FL(pt) = −α((1 − pt)^γ) * log(pt)
In general α should be decreased slightly as γ is increased (for γ = 2, α = 0.25 works best).
"""
def __init__(self, focusing_param=2, balance_param=0.25):
super().__init__()
self.gamma = focusing_param
self.alpha = balance_param
def forward(self, inputs, targets, weights=None):
logpt = -binary_cross_entropy(inputs, targets, weights)
pt = torch.exp(logpt)
# compute the loss
focal_loss = -((1-pt)**self.gamma) * logpt
balanced_focal_loss = self.alpha * focal_loss
return balanced_focal_loss
def criterion(preds, labels):
# (1) BCE Loss
# return BinaryCrossEntropyLoss2d().forward(preds, labels)
# (2) BCE Loss + DICE Loss
# return BinaryCrossEntropyLoss2d().forward(preds, labels) + \
# SoftDiceLoss().forward(preds, labels)
# (3) BCE Loss + Jaccard/IoU Loss
return BinaryCrossEntropyLoss2d().forward(preds, labels) + \
IoULoss().forward(preds, labels)
def segment_criterion(preds, labels):
return BinaryCrossEntropyLoss2d().forward(preds, labels) + \
IoULoss().forward(preds, labels)
def contour_criterion(preds, labels):
return IoULoss().forward(preds, labels)
def weight_criterion(preds, labels, weights):
return binary_cross_entropy(preds, labels, weights) + \
IoULoss().forward(preds, labels)
def focal_criterion(preds, labels, weights):
return FocalLoss().forward(preds, labels, weights) + \
IoULoss().forward(preds, labels)