-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCritic.py
58 lines (53 loc) · 1.69 KB
/
Critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)
# model definition
class Critic(nn.Module):
# define model elements
def __init__(self):
super(Critic, self).__init__()
self.conv1 = conv3x3(3, 32)
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU(inplace=True)
self.mp1 = nn.MaxPool2d((2,2), stride=(2,2))
self.conv2 = conv3x3(32, 32)
self.bn2 = nn.BatchNorm2d(32)
self.relu2 = nn.ReLU(inplace=True)
self.mp2 = nn.MaxPool2d((2,2), stride=(2,2))
self.linear1 = nn.Linear(2048, 1024)
self.relu3 = nn.ReLU(inplace=True)
self.linear2 = nn.Linear(1024, 512)
self.relu4 = nn.ReLU(inplace=True)
self.linear3 = nn.Linear(512, 128)
self.relu5 = nn.ReLU(inplace=True)
self.linear4 = nn.Linear(128, 1)
# forward propagate input
def forward(self, x):
# print(x.shape)
x = self.conv1(x)
# print(x.shape)
x = self.bn1(x)
# print(x.shape)
x = self.relu1(x)
# print(x.shape)
x = self.mp1(x)
# print(x.shape)
x = self.conv2(x)
# print(x.shape)
x = self.bn2(x)
x = self.relu2(x)
x = self.mp2(x)
x = x.view(x.size(0), -1)
x = self.linear1(x)
x = self.relu3(x)
x = self.linear2(x)
x = self.relu4(x)
x = self.linear3(x)
x = self.relu5(x)
x = self.linear4(x)
return x