forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAffineGridGenerator.cpp
146 lines (130 loc) · 4.45 KB
/
AffineGridGenerator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/TensorOperators.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/affine_grid_generator_backward_native.h>
#include <ATen/ops/affine_grid_generator_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/linspace.h>
#include <ATen/ops/tensor.h>
#endif
namespace at { namespace native {
static at::Tensor linspace_from_neg_one(const Tensor& grid, int64_t num_steps,
bool align_corners) {
if (num_steps <= 1) {
return at::tensor(0, grid.options());
}
auto range = at::linspace(-1, 1, num_steps, grid.options());
if (!align_corners) {
range = range * (num_steps - 1) / num_steps;
}
return range;
}
static Tensor make_base_grid_4D(
const Tensor& theta,
int64_t N,
int64_t C,
int64_t H,
int64_t W,
bool align_corners) {
auto base_grid = at::empty({N, H, W, 3}, theta.options());
base_grid.select(-1, 0).copy_(linspace_from_neg_one(theta, W, align_corners));
base_grid.select(-1, 1).copy_(linspace_from_neg_one(theta, H, align_corners).unsqueeze_(-1));
base_grid.select(-1, 2).fill_(1);
return base_grid;
}
static Tensor make_base_grid_5D(
const Tensor& theta,
int64_t N,
int64_t C,
int64_t D,
int64_t H,
int64_t W,
bool align_corners) {
auto base_grid = at::empty({N, D, H, W, 4}, theta.options());
base_grid.select(-1, 0).copy_(linspace_from_neg_one(theta, W, align_corners));
base_grid.select(-1, 1).copy_(linspace_from_neg_one(theta, H, align_corners).unsqueeze_(-1));
base_grid.select(-1, 2).copy_(linspace_from_neg_one(theta, D, align_corners).unsqueeze_(-1).unsqueeze_(-1));
base_grid.select(-1, 3).fill_(1);
return base_grid;
}
static Tensor affine_grid_generator_4D(
const Tensor& theta,
int64_t N,
int64_t C,
int64_t H,
int64_t W,
bool align_corners) {
Tensor base_grid = make_base_grid_4D(theta, N, C, H, W, align_corners);
auto grid = base_grid.view({N, H * W, 3}).bmm(theta.transpose(1, 2));
return grid.view({N, H, W, 2});
}
static Tensor affine_grid_generator_5D(
const Tensor& theta,
int64_t N,
int64_t C,
int64_t D,
int64_t H,
int64_t W,
bool align_corners) {
Tensor base_grid = make_base_grid_5D(theta, N, C, D, H, W, align_corners);
auto grid = base_grid.view({N, D * H * W, 4}).bmm(theta.transpose(1, 2));
return grid.view({N, D, H, W, 3});
}
Tensor affine_grid_generator(const Tensor& theta, IntArrayRef size, bool align_corners) {
TORCH_CHECK(
size.size() == 4 || size.size() == 5,
"AffineGridGenerator needs 4d (spatial) or 5d (volumetric) inputs.");
if (size.size() == 4) {
return affine_grid_generator_4D(
theta, size[0], size[1], size[2], size[3], align_corners);
} else {
return affine_grid_generator_5D(
theta, size[0], size[1], size[2], size[3], size[4], align_corners);
}
}
static Tensor affine_grid_generator_4D_backward(
const Tensor& grad_grid,
int64_t N,
int64_t C,
int64_t H,
int64_t W,
bool align_corners) {
auto base_grid = make_base_grid_4D(grad_grid, N, C, H, W, align_corners);
AT_ASSERT(grad_grid.sizes() == IntArrayRef({N, H, W, 2}));
auto grad_theta = base_grid.view({N, H * W, 3})
.transpose(1, 2)
.bmm(grad_grid.view({N, H * W, 2}));
return grad_theta.transpose(1, 2);
}
static Tensor affine_grid_generator_5D_backward(
const Tensor& grad_grid,
int64_t N,
int64_t C,
int64_t D,
int64_t H,
int64_t W,
bool align_corners) {
auto base_grid = make_base_grid_5D(grad_grid, N, C, D, H, W, align_corners);
AT_ASSERT(grad_grid.sizes() == IntArrayRef({N, D, H, W, 3}));
auto grad_theta = base_grid.view({N, D * H * W, 4})
.transpose(1, 2)
.bmm(grad_grid.view({N, D * H * W, 3}));
return grad_theta.transpose(1, 2);
}
Tensor affine_grid_generator_backward(const Tensor& grad, IntArrayRef size, bool align_corners) {
TORCH_CHECK(
size.size() == 4 || size.size() == 5,
"AffineGridGenerator needs 4d (spatial) or 5d (volumetric) inputs.");
if (size.size() == 4) {
return affine_grid_generator_4D_backward(
grad, size[0], size[1], size[2], size[3], align_corners);
} else {
return affine_grid_generator_5D_backward(
grad, size[0], size[1], size[2], size[3], size[4], align_corners);
}
}
}} // namespace at::native