-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathclean.py
110 lines (100 loc) · 3.59 KB
/
clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from segan.models import *
from segan.datasets import *
import soundfile as sf
from scipy.io import wavfile
from torch.autograd import Variable
import numpy as np
import random
import librosa
import matplotlib
import timeit
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import json
import glob
import os
class ArgParser(object):
def __init__(self, args):
for k, v in args.items():
setattr(self, k, v)
def main(opts):
assert opts.cfg_file is not None
assert opts.test_files is not None
assert opts.g_pretrained_ckpt is not None
with open(opts.cfg_file, 'r') as cfg_f:
args = ArgParser(json.load(cfg_f))
print('Loaded train config: ')
print(json.dumps(vars(args), indent=2))
args.cuda = opts.cuda
if hasattr(args, 'wsegan') and args.wsegan:
segan = WSEGAN(args)
else:
segan = SEGAN(args)
segan.G.load_pretrained(opts.g_pretrained_ckpt, True)
if opts.cuda:
segan.cuda()
segan.G.eval()
if opts.h5:
with h5py.File(opts.test_files[0], 'r') as f:
twavs = f['data'][:]
else:
# process every wav in the test_files
if len(opts.test_files) == 1:
# assume we read directory
twavs = glob.glob(os.path.join(opts.test_files[0], '*.wav'))
else:
# assume we have list of files in input
twavs = opts.test_files
print('Cleaning {} wavs'.format(len(twavs)))
beg_t = timeit.default_timer()
for t_i, twav in enumerate(twavs, start=1):
if not opts.h5:
tbname = os.path.basename(twav)
rate, wav = wavfile.read(twav)
wav = normalize_wave_minmax(wav)
else:
tbname = 'tfile_{}.wav'.format(t_i)
wav = twav
twav = tbname
wav = pre_emphasize(wav, args.preemph)
pwav = torch.FloatTensor(wav).view(1,1,-1)
if opts.cuda:
pwav = pwav.cuda()
g_wav, g_c = segan.generate(pwav)
out_path = os.path.join(opts.synthesis_path,
tbname)
if opts.soundfile:
sf.write(out_path, g_wav, 16000)
else:
wavfile.write(out_path, 16000, g_wav)
end_t = timeit.default_timer()
print('Cleaned {}/{}: {} in {} s'.format(t_i, len(twavs), twav,
end_t-beg_t))
beg_t = timeit.default_timer()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--g_pretrained_ckpt', type=str, default=None)
parser.add_argument('--test_files', type=str, nargs='+', default=None)
parser.add_argument('--h5', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=111,
help="Random seed (Def: 111).")
parser.add_argument('--synthesis_path', type=str, default='segan_samples',
help='Path to save output samples (Def: ' \
'segan_samples).')
parser.add_argument('--cuda', action='store_true', default=False)
parser.add_argument('--soundfile', action='store_true', default=False)
parser.add_argument('--cfg_file', type=str, default=None)
opts = parser.parse_args()
if not os.path.exists(opts.synthesis_path):
os.makedirs(opts.synthesis_path)
# seed initialization
random.seed(opts.seed)
np.random.seed(opts.seed)
torch.manual_seed(opts.seed)
if opts.cuda:
torch.cuda.manual_seed_all(opts.seed)
main(opts)