-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathselect_speakers.py
212 lines (196 loc) · 6.69 KB
/
select_speakers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
from random import shuffle
import numpy as np
import operator
import glob
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import re
import json
def txt_clean_file(txtfile):
with open(txtf, 'r') as txt_f:
txt = txt_f.read().rstrip().lower()
txt = re.sub(r'[^\w\s]','',txt)
txt = re.sub(r'\s+',' ',txt)
return txt
VCTK_PATH='/veu/spascual/git/speakagan/data/vctk/raw/VCTK-Corpus/'
# Select test speakers maximizing textual contents, taking
# 14 speakers with minium intersection of contents with
# others in the 109 available in VCTKA.
spks = [l.rstrip().split(' ') for l in open(os.path.join(VCTK_PATH,
'speaker-info.txt'))]
spks = spks[1:]
spk2gen = dict(('p' + el[0], el[4]) for el in spks)
# add lost speaker
spk2gen['p280'] = 'F'
assert len(spk2gen) == 109, len(spk2gen)
txtfs = glob.glob(os.path.join(VCTK_PATH, 'txt', '**', '*.txt'), recursive=True)
print(len(txtfs))
if not os.path.exists('txt2spk') or not os.path.exists('spk2txt'):
spk2txt = {}
txt2spk = {}
for ii, txtf in enumerate(txtfs, start=1):
spk = txtf.split('/')[-2]
txtname = txtf.split('/')[-1]
txt = txt_clean_file(txtf)
if spk not in spk2txt:
spk2txt[spk] = []
spk2txt[spk].append(txt)
if txt not in txt2spk:
txt2spk[txt] = []
txt2spk[txt].append(spk)
print('Processed {}/{}'.format(ii, len(txtfs)))
with open('txt2spk', 'w') as txt2spk_f:
txt2spk_f.write(json.dumps(txt2spk))
with open('spk2txt', 'w') as spk2txt_f:
spk2txt_f.write(json.dumps(spk2txt))
else:
with open('txt2spk', 'r') as txt2spk_f:
txt2spk = json.load(txt2spk_f)
with open('spk2txt', 'r') as spk2txt_f:
spk2txt = json.load(spk2txt_f)
txt2count = dict((k, len(v)) for k, v in txt2spk.items())
print(len(txt2count))
#print(txt2count)
plt.hist(list(txt2count.values()), bins=50)
plt.xlabel('# spks per txt')
plt.savefig('txt2count_hist.png', dpi=200)
spk2count = dict((k, len(v)) for k, v in spk2txt.items())
print(spk2count)
print(len(spk2count))
print('**********')
if not os.path.exists('spk2maxcount'):
# matrix of spkxspk with interection counts of txts
spkmat = {}
# store repetition counts for each spk
spk2maxcount = dict((k, 0) for k in list(spk2txt.keys()))
spk2mincount = dict((k, np.inf) for k in list(spk2txt.keys()))
spk2count = dict((k, 0) for k in list(spk2txt.keys()))
for ii, txtf in enumerate(txtfs, start=1):
spk = txtf.split('/')[-2]
txt = txt_clean_file(txtf)
spk2maxcount[spk] = max(spk2maxcount[spk], len(txt2spk[txt]))
spk2mincount[spk] = min(spk2mincount[spk], len(txt2spk[txt]))
spk2count[spk] += len(txt2spk[txt])
if spk not in spkmat:
spkmat[spk] = {}
for intspk in txt2spk[txt]:
if intspk not in spkmat[spk]:
spkmat[spk][intspk] = 0
spkmat[spk][intspk] += 1
print('Processed {}/{}'.format(ii, len(txtfs)))
with open('spk2maxcount', 'w') as spk2maxcount_f:
spk2maxcount_f.write(json.dumps(spk2maxcount))
with open('spk2mincount', 'w') as spk2mincount_f:
spk2mincount_f.write(json.dumps(spk2mincount))
with open('spkmat', 'w') as spkmat_f:
spkmat_f.write(json.dumps(spkmat))
with open('spk2count', 'w') as spk2count_f:
spk2count_f.write(json.dumps(spk2count))
else:
with open('spk2count', 'r') as spk2count_f:
spk2count = json.load(spk2count_f)
with open('spk2maxcount', 'r') as spk2maxcount_f:
spk2maxcount = json.load(spk2maxcount_f)
with open('spk2mincount', 'r') as spk2mincount_f:
spk2mincount = json.load(spk2mincount_f)
with open('spkmat', 'r') as spkmat_f:
spkmat = json.load(spkmat_f)
print(sorted(spk2maxcount.items(), key=operator.itemgetter(1)))
print('---------------')
print(sorted(spk2mincount.items(), key=operator.itemgetter(1)))
print('ooooooooooooooo')
sorted_counts = sorted(spk2count.items(), key=operator.itemgetter(1))
print(sorted_counts)
with open('spkmat.txt', 'w') as mattxt_f:
spks_h = list(spkmat.keys())
header = ''
for spk_h in spks_h:
header += spk_h + ' '
header = ' ' + header[:-1] + '\n'
mattxt_f.write(header)
# print header
for si, spk in enumerate(spks_h):
mattxt_f.write(spk + ' ')
row = spkmat[spk]
row_txt = ''
for row_spk in spks_h:
row_txt += '{:4d} '.format(spkmat[spk][row_spk])
row_txt = row_txt[:-1] + '\n'
mattxt_f.write(row_txt)
TEST_FILES = 14
VALID_FILES = 15
test_spks = []
valid_spks = []
train_spks = []
nontest_counts = []
# Now with minimum counts create test set, ensuring 50% 50% in male female
f = 0
m = 0
for spk in sorted_counts:
if f + m < TEST_FILES:
gen = spk2gen[spk[0]]
if gen == 'F':
if f <= TEST_FILES // 2:
print('Adding F spk: ', spk)
f += 1
else:
print('Skipping F spk: ', spk)
continue
if gen == 'M':
if m <= TEST_FILES // 2:
print('Adding M spk: ', spk)
m += 1
else:
print('Skipping M spk: ', spk)
continue
print('f: {}, m: {}'.format(f, m))
test_spks.append(spk[0])
else:
nontest_counts.append(spk)
#re-shuffle counts now to mix valid-train
shuffle(nontest_counts)
print('DOING VALID -------------------------')
# Valid spks 50% 50%
f = 0
m = 0
for spk in nontest_counts:
gen = spk2gen[spk[0]]
if spk[0] in test_spks:
continue
if gen == 'F':
if f <= VALID_FILES // 2:
print('Adding F spk: ', spk)
f += 1
else:
print('Skipping F spk: ', spk)
continue
if gen == 'M':
if m <= VALID_FILES // 2:
print('Adding M spk: ', spk)
m += 1
else:
print('Skipping M spk: ', spk)
continue
print('f: {}, m: {}'.format(f, m))
valid_spks.append(spk[0])
if f + m >= VALID_FILES:
print('Out of valid')
break
for spk in spk2gen.keys():
if spk in (test_spks + valid_spks):
continue
train_spks.append(spk)
print('train spks: ', len(train_spks))
print('valid spks: ', len(valid_spks))
print('test spks: ', len(test_spks))
with open('train_split.txt', 'w') as train_f:
for tr_spk in train_spks:
train_f.write(tr_spk[1:] + '\n')
with open('valid_split.txt', 'w') as valid_f:
for va_spk in valid_spks:
valid_f.write(va_spk[1:] + '\n')
with open('test_split.txt', 'w') as test_f:
for te_spk in test_spks:
test_f.write(te_spk[1:] + '\n')