-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhivectorset.jl
196 lines (161 loc) · 5.8 KB
/
hivectorset.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
struct MaxMinBloomFilter{T}
min::T
max::T
end
MaxMinBloomFilter(x::MaxMinBloomFilter) = x
MaxMinBloomFilter(x::T) where {T} = MaxMinBloomFilter{T}(x,x)
function Base.in(item::T,mmbf::MaxMinBloomFilter{T}) where {T}
mmbf.min <= item <= mmbf.max
end
function insert(bf::MaxMinBloomFilter{T},x::T) where {T}
MaxMinBloomFilter{T}(min(bf.min,x),max(bf.max,x))
end
function insert(bf::MaxMinBloomFilter{T},x::MaxMinBloomFilter{T}) where {T}
MaxMinBloomFilter{T}(min(bf.min,x.min),max(bf.max,x.max))
end
Base.show(io::IO, bf::MaxMinBloomFilter) = print("[$(bf.min)..$(bf.max)]")
bloom_table_type(t::Type{<:AbstractVector{T}}) where {T} = Vector{MaxMinBloomFilter{T}}
bloom_table_type(t::Type{Vector{MaxMinBloomFilter{T}}}) where {T} = Vector{MaxMinBloomFilter{T}}
function make_bloom_table(v::AbstractVector{T},fanout) where {T}
bv = bloom_table_type(Vector{T})(undef,cld(length(v),fanout))
for (i,b) in enumerate(v)
if isone(i % fanout)
bv[cld(i,fanout)] = MaxMinBloomFilter(b)
end
bv[cld(i,fanout)] = insert(bv[cld(i,fanout)],b)
end
bv
end
struct HiVecSet{N,F,T,V<:AbstractVector{T}}
table::V
bloomtables::NTuple{N,Vector{MaxMinBloomFilter{T}}}
end
const HiBitSet{N,F} = HiVecSet{N,F,Bool,BitVector}
function HiVecSet{N,F}(v::V) where {N,F,T,V<:AbstractVector{T}}
mxn = v
bloom_table_iter = ((mxn = make_bloom_table(mxn,F);mxn) for i in 1:N)
HiVecSet{N,F,T,V}(v, Tuple(bloom_table_iter))
end
HiVecSet{N,F,T,V}(v::V) where {N,F,T,V<:AbstractVector{T}} = HiVecSet{N,F}(v)
Base.getindex(bv::HiVecSet,i) = bv.table[i]
hbs_layer(l, hbs::HiVecSet) = hbs.bloomtables[l]
Base.firstindex(hbs::HiVecSet) = firstindex(hbs.table)
Base.lastindex(hbs::HiVecSet) = lastindex(hbs.table)
Base.length(hbs::HiVecSet) = length(hbs.table)
layerget(l,hbs::HiVecSet,i) = hbs_layer(l,hbs)[i]
layerget_zero(l,hbs::HiVecSet,i) = hbs_layer(l,hbs)[begin + i]
function repair_invariant(v::HiVecSet{N,F,T},n) where {N,F,T}
n -= 1
n -= n % F
chunk = view(v.table,(n+1):min(n+F,length(v)))
mxn = MaxMinBloomFilter(first(chunk))
for e in chunk
mxn = insert(mxn,e)
end
for l = 1:N
n = div(n,F)
maxmins = hbs_layer(l,v)
maxmins[begin+n] = mxn
chunkmaxmins = view(maxmins,(n+1):min(n+F,length(maxmins)))
for e in chunkmaxmins
mxn = insert(mxn,e)
end
end
end
function Base.setindex!(v::HiVecSet,value,i)
v.table[i] = value
repair_invariant(v,i)
end
function Base.push!(v::HiVecSet{N,F},value) where {N,F}
layersizes = length.(v.bloomtables)
i = length(v.table)
l = 1
push!(v.table,value)
while l<=N && iszero(i % F)
push!(hbs_layer(l,v),MaxMinBloomFilter(value))
l += 1
i = div(i,F)
end
repair_invariant(v,length(v.table))
end
function Base.show(io::IO,v::HiVecSet{N,F,T}) where {N,F,T}
println("HiVecSet{$N,$F,$T} with $(length(v)) elements:")
for i in 1:length(v)
print(io,"$(v[i]) \t | ")
j = i - 1
for l in 1:N
print(io,"\t")
if j % F^l == 0
print(io, layerget_zero(l,v,div(j,F^l)))
elseif (j+1) % F^l != 0
i == length(v) ? print(io,"[ ↓↓ ]\t") : print(io,"[ || ]\t")
else
print(io,"[<++ ]\t")
end
end
println(io,";")
end
end
# Interface: getindex returns booleans,
# layerget gets the Or of all booleans returned, much like for hibitset.
abstract type HBSQuery{N,F} end
function Base.findnext(q::HBSQuery{N,F},i::Integer) where {N,F}
i -= firstindex(q) # This algorithm uses zero-indexing for modular arithmetic.
lastind = lastindex(q) - firstindex(q)
while i <= lastind
if q[begin+i]
return firstindex(q) + i
end
step = 1
l = 1
j = i
while l<=N && iszero(j % F) && !layerget_zero(l,q,div(j,F))
l+=1
j = div(j,F)
step *= F
end
i += step
end
end
function Base.iterate(q::HBSQuery,state=firstindex(q))
n = findnext(q,state)
isnothing(n) ? nothing : (n,n+1)
end
Base.eltype(::Type{<:HBSQuery}) = Int
Base.IteratorSize(::Type{<:HBSQuery}) = Base.SizeUnknown()
import Base.(!)
struct EqualsQuery{N,F,T,V} <: HBSQuery{N,F}
element::T
hvs::V
end
equalsquery(hvs::HiVecSet{N,F,T,V},value::T) where {N,F,T,V} = EqualsQuery{N,F,T,HiVecSet{N,F,T,V}}(value,hvs)
Base.firstindex(q::EqualsQuery) = firstindex(q.hvs)
Base.lastindex(q::EqualsQuery) = lastindex(q.hvs)
Base.getindex(q::EqualsQuery,i) = q.hvs[i] == q.element
layerget(l,q::EqualsQuery,i) = iszero(l) ? q[i] : q.element ∈ layerget(l,q.hvs,i)
layerget_zero(l,q::EqualsQuery,i) = iszero(l) ? q[begin+i] : q.element ∈ layerget_zero(l,q.hvs,i)
!(q::EqualsQuery{N,F,Bool,V}) where {N,F,V} = EqualsQuery{N,F,Bool,V}(!q.element,q.hvs)
import Base.(&)
struct AndQuery{N,F,A<:HBSQuery{N,F},B<:HBSQuery{N,F}} <: HBSQuery{N,F}
a::A
b::B
end
(a::A & b::B) where {N,F,A<:HBSQuery{N,F},B<:HBSQuery{N,F}} = AndQuery(a,b)
Base.firstindex(q::AndQuery) = firstindex(q.a)
Base.lastindex(q::AndQuery) = lastindex(q.a)
Base.getindex(q::AndQuery,i) = q.a[i] & q.b[i]
layerget(l,q::AndQuery,i) = layerget(l,q.a,i) & layerget(l,q.a,i)
layerget_zero(l,q::AndQuery,i) = layerget_zero(l,q.a,i) & layerget_zero(l,q.a,i)
!(q::AndQuery) = !q.a | !q.b
import Base.(|)
struct OrQuery{N,F,A<:HBSQuery{N,F},B<:HBSQuery{N,F}} <: HBSQuery{N,F}
a::A
b::B
end
(a::A | b::B) where {N,F,A<:HBSQuery{N,F},B<:HBSQuery{N,F}} = OrQuery(a,b)
Base.firstindex(q::OrQuery) = firstindex(q.a)
Base.lastindex(q::OrQuery) = lastindex(q.a)
Base.getindex(q::OrQuery,i) = q.a[i] | q.b[i]
layerget(l,q::OrQuery,i) = layerget(l,q.a,i) | layerget(l,q.a,i)
layerget_zero(l,q::OrQuery,i) = layerget_zero(l,q.a,i) | layerget_zero(l,q.a,i)
!(q::OrQuery) = !q.a & !q.b