-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathresnet.py
136 lines (104 loc) · 4.37 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py (71322cba652b4ba7bcaa7ae5ee86f539d1ae3a2b)
import torch.nn as nn
USE_RELU = True
__all__ = ['ResNet', 'resnet18']
def conv3x3(in_planes, out_planes, stride=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, dilation=dilation,
padding=dilation, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1):
super(BasicBlock, self).__init__()
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride, dilation)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
if USE_RELU:
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
if USE_RELU:
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_input_channels=3, num_classes=1000, dilation=False):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(num_input_channels, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.dilation = 1
self.layer1 = self._make_layer(block, 64, layers[0])
if dilation:
self.layer2 = self._make_layer(block, 128, layers[1], stride=3, dilation=dilation)
self.layer3 = self._make_layer(block, 256, layers[2], stride=3, dilation=dilation)
self.layer4 = self._make_layer(block, 512, layers[3], stride=3, dilation=dilation)
else:
self.layer2 = self._make_layer(block, 128, layers[1])
self.layer3 = self._make_layer(block, 256, layers[2])
self.layer4 = self._make_layer(block, 512, layers[3])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilation=False):
downsample = None
previous_dilation = self.dilation
if dilation:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes, stride),
nn.BatchNorm2d(planes),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, dilation=previous_dilation))
self.inplanes = planes
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, dilation=self.dilation))
return nn.Sequential(*layers)
def features(self, x):
x = self.conv1(x)
x = self.bn1(x)
if USE_RELU:
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x):
x = self.features(x)
self.feature_maps = [x]
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18(**kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)