-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
96 lines (76 loc) · 3.34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from typing import Optional, Tuple
import numpy as np
import torch
import torch_dct
from torchaudio.functional import fftconvolve
EPS = np.finfo(np.float32).eps
def normalize(audio: torch.Tensor, target_level: int = -25) -> torch.Tensor:
"""Normalize the signal to the target level"""
rms = (audio**2).mean() ** 0.5
scalar = 10 ** (target_level / 20) / (rms + EPS)
audio = audio * scalar
return audio
def make_reverb(clean: torch.Tensor, rir: torch.Tensor) -> torch.Tensor:
reverb_speech = fftconvolve(clean, rir, mode="full")
return reverb_speech[:, : clean.shape[1]]
def make_noisy(
clean: torch.Tensor,
rir: torch.Tensor,
noise: torch.Tensor,
snr_range: Tuple[int, int],
db_range: Tuple[int, int],
target_level: int = -25,
) -> torch.Tensor:
# reference:
# https://github.com/microsoft/DNS-Challenge/blob/a2c7487e12d06d709aeebe5659c21bbf6e1a47aa/audiolib.py#L155
snr = np.random.randint(snr_range[0], snr_range[1])
if clean.shape[1] > noise.shape[1]:
noise = torch.nn.functional.pad(noise, (0, clean.shape[1] - noise.shape[1]))
else:
noise = noise[:, : clean.shape[1]]
# normalize
reverb = make_reverb(clean, rir)
reverb /= reverb.abs().max() + EPS
reverb = normalize(reverb, target_level)
rms_reverb = (reverb**2).mean() ** 0.5
clean /= clean.abs().max() + EPS
clean = normalize(clean, target_level)
noise /= noise.abs().max() + EPS
noise = normalize(noise, target_level)
rms_noise = (noise**2).mean() ** 0.5
# Set the noise level for a given SNR
noise_scaler = rms_reverb / (rms_noise + EPS) / (10 ** (snr / 20.0))
noise = noise * noise_scaler
noisy = reverb + noise
noisy_target_level = np.random.randint(db_range[0], db_range[1])
rms_noisy = (noisy**2).mean() ** 0.5
noisy_scaler = 10 ** (noisy_target_level / 20) / (rms_noisy + EPS)
clean = clean * noisy_scaler
noisy = noisy * noisy_scaler
noise = noise * noisy_scaler
return clean.squeeze(), noisy.squeeze(), noise.squeeze()
def frame(
signal: torch.Tensor, frame_length: int, hop_length: int, window: Optional[torch.Tensor] = None
) -> torch.Tensor:
frames = signal.unfold(-1, frame_length, hop_length)
if window is not None:
frames = frames * window
return frames
def stdct(
signal: torch.Tensor, frame_length: int, hop_length: int, window: Optional[torch.Tensor] = None
) -> torch.Tensor:
frames = frame(signal, frame_length, hop_length, window)
return torch_dct.dct(frames, norm="ortho")
def istdct(dct, frame_length, hop_length, window=None):
frames = torch_dct.idct(dct, norm="ortho").squeeze(1)
num_frames = frames.shape[-2]
audio = torch.zeros((frames.shape[0], num_frames * hop_length + frame_length - hop_length), device=frames.device)
overlap = torch.zeros((frames.shape[0], num_frames * hop_length + frame_length - hop_length), device=frames.device)
if window is None:
window = torch.ones(frame_length, device=frames.device)
for i in range(num_frames):
audio[:, i * hop_length : i * hop_length + frame_length] += frames[:, i, :]
overlap[:, i * hop_length : i * hop_length + frame_length] += window
overlap = overlap.clamp(min=1e-8)
audio /= overlap
return audio