-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathssv.py
executable file
·460 lines (395 loc) · 16.4 KB
/
ssv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# --------------------------------------------------------
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved.
# Nvidia Source Code License-NC
# Code written by Siva Karthik Mustikovela.
# --------------------------------------------------------
import torch
from torch import nn
from torch.nn import init
from torch.nn import functional as F
import torch.nn.utils.spectral_norm as spectralnorm
from torch.autograd import Variable
from easydict import EasyDict as edict
from collections import OrderedDict as odict
from utils import ssv
import numpy as np
from math import sqrt
import random
import code
from utils.network_blocks import *
from extern.network_blocks import PixelNorm
eps = 1e-6
# Generator module for VP aware synthesizer
class VPASGenerator(nn.Module):
def __init__(self, code_dim):
super().__init__()
self.progression1 = nn.ModuleList(
[
StyledConvBlock3(512, 512, 3, 1, style_dim=code_dim, initial=True),
StyledConvBlock3(512, 512, 3, 1, style_dim=code_dim,),
StyledConvBlock3(512, 256, 3, 1, style_dim=code_dim,),
]
)
# self.progression2 = nn.ModuleList(
# [
# StyledConvBlock3_noAdaIN(256, 128, 3, 1),
# StyledConvBlock3_noAdaIN(128, 64, 3, 1),
# ]
# )
# self.projection_unit = projection_unit(64 * 16, 64 * 16)
# self.scb1 = StyledConvBlock2(1024, 512, 3, 1, style_dim=code_dim)
# self.scb2 = StyledConvBlock2(512, 512, 3, 1, style_dim=code_dim)
# self.scb3 = StyledConvBlock2(512, 256, 3, 1, style_dim=code_dim)
# self.scb4 = StyledConvBlock2(256, 128, 3, 1, style_dim=code_dim)
# self.to_rgb = EqualConv2d(128, 3, 1)
def forward(self, style, rots, batch_size):
for i, conv in enumerate(self.progression1):
if i == 0:
out = conv(batch_size, style[0])
else:
upsample = F.interpolate(
out, scale_factor=2, mode="trilinear", align_corners=False
)
out = conv(upsample, style[0])
bsz, num_objs = style.size
flow = F.affine_grid(rots, torch.Size([batch_size, 256, 16, 16, 16]))
out = F.grid_sample(out, flow)
# for i, conv in enumerate(self.progression2):
# out = conv(out)
# out = self.projection_unit(out)
# out = self.scb1(out, style[1])
# out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
# out = self.scb2(out, style[1])
# out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
# out = self.scb3(out, style[1])
# out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
# out = self.scb4(out, style[1])
# out = self.to_rgb(out)
return out
# Viewpoint aware synthesizer
class VPAwareSynthesizer(nn.Module):
def __init__(self, code_dim=128, n_mlp=8):
super().__init__()
# Generator network
self.generator = VPASGenerator(code_dim)
# Style network
layers = [PixelNorm()]
for i in range(n_mlp):
layers.append(EqualLinear(code_dim, code_dim))
layers.append(nn.LeakyReLU(0.2))
self.style = nn.Sequential(*layers)
def forward(self, input, rots=None):
styles = []
if type(input) not in (list, tuple):
input = [input]
for i in input:
styles.append(self.style(i))
return self.generator(styles, rots, batch_size=input[0].shape[0])
# Viewpoint network
class VPNet(nn.Module):
@staticmethod
def head_seq(in_size, num_fc=1024, init_weights=True):
"""
Creates a head with fc layer and outputs for magnitute of [sine, cosine] and direction {--, -+, +-, ++}
"""
seq_fc8 = nn.Sequential(
EqualLinear(in_size, num_fc), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(),
)
seq_ccss = EqualLinear(num_fc, 2) # magnitude of sin and cos
seq_sgnc = EqualLinear(num_fc, 4) # direction/quadrant of sine and cos
# seq_pres = EqualLinear(num_fc, 1)
# seq_scale = EqualLinear(num_fc, 1)
# seq_txtz = EqualLinear(num_fc, 2)
return seq_fc8, seq_ccss, seq_sgnc
def __init__(self, bg_code_dim=64, fg_code_dim=128, instance_norm=False):
super().__init__()
self.from_rgb = EqualConv2d(5, 32, 1)
self.progression = nn.ModuleList(
[
ConvBlock(32, 64, 3, 1, instance_norm=instance_norm),
ConvBlock(64, 128, 3, 1, instance_norm=instance_norm),
ConvBlock(128, 128, 3, 1, instance_norm=instance_norm),
# ConvBlock(256, 256, 3, 1, instance_norm=instance_norm),
# ConvBlock(256, 512, 3, 1, instance_norm=instance_norm),
]
)
self.class_trunk = nn.ModuleList(
[
ConvBlock(128, 256, 4, 1, 4, 0, instance_norm=instance_norm),
ConvBlock(257, 256, 4, 1, 4, 0, last=True, instance_norm=instance_norm),
]
)
self.fg_trunk = nn.ModuleList(
[
ConvBlock(130, 256, 4, 1, 4, 1, instance_norm=instance_norm),
ConvBlock(256, 256, 3, 1, 3, 1, last=True, instance_norm=instance_norm),
]
)
# BG classification
self.bg_z_linear = EqualLinear(256, bg_code_dim)
self.class_linear = EqualLinear(256, 1)
# Head for viewpoint estimation
# (
# self.head_fc_a,
# self.head_x2_y2_mag_a,
# self.head_sin_cos_direc_a,
# ) = self.head_seq(512, num_fc=512)
# self.head_fc_e, self.head_x2_y2_mag_e, self.head_sin_cos_direc_e = self.head_seq(512, num_fc=256)
# self.head_fc_t, self.head_x2_y2_mag_t, self.head_sin_cos_direc_t = self.head_seq(512, num_fc=256)
# FC layer for reconstruction of z
# self.fg_z_linear = EqualLinear(512, fg_code_dim)
self.loc_dim = 512
self.fg_loc_head = nn.Sequential(
EqualLinear(256, self.loc_dim), nn.LeakyReLU(0.2, inplace=True), nn.Dropout(),
)
self.presence_linear = nn.Linear(self.loc_dim, 1)
self.presence_linear.weight.data.zero_()
self.presence_linear.bias.data.zero_()
self.scale_linear = nn.Linear(self.loc_dim, 2)
self.scale_linear.weight.data.zero_()
self.scale_linear.bias.data.fill_(0.5)
self.shift_linear = nn.Linear(self.loc_dim, 2)
self.shift_linear.weight.data.zero_()
self.shift_linear.bias.data.fill_(0.5)
self.depth_linear = nn.Linear(self.loc_dim, 1)
self.depth_linear.weight.data.zero_()
self.depth_linear.bias.data.fill_(0.0)
# self.tx_linear = EqualLinear(512, 2)
# self.tz_linear = EqualLinear(512, 2)
# For the magnitute part
self.logsoftmax = nn.LogSoftmax(dim=-1) # .cuda()
# Setup the loss here.
self.loss_mag = negDotLoss()
self.loss_direc = CELoss()
self.balance_weight = 1.0
def forward(self, input, k=10, sample_p=True, temperature=1):
# step = 5
# alpha = -1
input = (input * 2) - 1 # training trick
grid = torch.stack(
torch.meshgrid(
(
torch.linspace(-1, 1, input.size(2)),
torch.linspace(-1, 1, input.size(3)),
)
),
0,
)
grid = grid.unsqueeze(0).expand(input.size(0), -1, -1, -1).to(input.device)
if self.training:
grid = grid + torch.empty_like(grid).normal_(0, 0.01) # to reduce overfit
out = torch.cat((input, grid), 1)
out = self.from_rgb(out)
for i, block in enumerate(self.progression):
out = block(out)
# if i > 0:
# if i < (len(self.progression) - 1):
out = F.interpolate(
out, scale_factor=0.5, mode="bilinear", align_corners=False
)
class_out = out
# class_out = F.interpolate(
# out, scale_factor=0.5, mode="bilinear", align_corners=False
# )
class_out = self.class_trunk[0](class_out)
class_out = F.interpolate(
class_out, scale_factor=0.5, mode="bilinear", align_corners=False
)
out_std = torch.sqrt(class_out.var(0, unbiased=False) + 1e-8)
mean_std = out_std.mean()
mean_std = mean_std.expand(
class_out.size(0), 1, class_out.size(2), class_out.size(3)
)
class_out = torch.cat([class_out, mean_std], 1)
class_out = self.class_trunk[1](class_out)
class_out = F.interpolate(
class_out, scale_factor=0.5, mode="bilinear", align_corners=False
)
# Output from trunk.
grid = torch.stack(
torch.meshgrid(
(
torch.linspace(-1, 1, out.size(2)),
torch.linspace(-1, 1, out.size(3)),
)
),
0,
)
grid = grid.unsqueeze(0).expand(out.size(0), -1, -1, -1).to(out.device)
if self.training:
grid = grid + torch.empty_like(grid).normal_(0, 0.01) # to reduce overfit
fg = torch.cat((out, grid), 1)
fg = self.fg_trunk[0](fg)
fg = self.fg_trunk[1](fg)
fg = fg.permute(0, 2, 3, 1)
bg = class_out.squeeze(2).squeeze(2)
batchsize = fg.size(0)
# Outputs
# Class output
is_real = self.class_linear(bg)
z_bg = self.bg_z_linear(bg)
# z output
# Now the viewpoint part
# x_a = self.head_fc_a(fg)
# x_e = self.head_fc_e(trunk_out)
# x_t = self.head_fc_t(trunk_out)
# z_fg = self.fg_z_linear(fg)
fg_loc = self.fg_loc_head(fg)
scale = self.scale_linear(fg_loc).clamp(1e-3)
presence_logits = self.presence_linear(fg_loc)
shift = self.shift_linear(fg_loc).clamp(-0, 1.5)
depth = torch.sigmoid(self.depth_linear(fg_loc))
# tx = self.tx_linear(fg_loc)
# tz = self.tz_linear(fg_loc)
# Get magnitude outputs {MAGNITUDE}
# mag_x2_y2_a = self.head_x2_y2_mag_a(x_a) # .view(batchsize, 1, 2)
# mag_x2_y2_e = self.head_x2_y2_mag_e(x_e).view(batchsize, 1, 2)
# mag_x2_y2_t = self.head_x2_y2_mag_t(x_t).view(batchsize, 1, 2)
# Log Softmax on mag outputs {MAGNITUDE}
# logsoftmax_x2_y2_a = self.logsoftmax(mag_x2_y2_a)
# logsoftmax_x2_y2_e = self.logsoftmax(mag_x2_y2_e)
# logsoftmax_x2_y2_t = self.logsoftmax(mag_x2_y2_t)
# Signs/Directions of outputs {SIGN}
# sign_x_y_a = self.head_sin_cos_direc_a(x_a) # .view(batchsize, 1, 4)
# sign_x_y_e = self.head_sin_cos_direc_e(x_e).view(batchsize,1,4)
# sign_x_y_t = self.head_sin_cos_direc_t(x_t).view(batchsize,1,4)
viewpoint_op = odict( # log probability of xx, yy (xx+yy=1 or x^2+y^2=1)
fg=odict(
# logprob_xxyy=odict(
# a=logsoftmax_x2_y2_a,
# # e = logsoftmax_x2_y2_e,
# # t = logsoftmax_x2_y2_t,
# ),
# sign_x_y=odict(
# a=sign_x_y_a,
# # e = sign_x_y_e,
# # t = sign_x_y_t,
# ),
presence=torch.sigmoid(presence_logits),
presence_logits=presence_logits,
# presence_bottom=presence[topk_complement].view(batchsize, -1),
scale=scale,
shift=shift,
depth=depth,
# tx=tx,
# tz=tz,
# z_fg=z_fg,
fg_map=fg,
fg_loc_map=fg_loc,
),
bg=odict(is_real=is_real, z_bg=z_bg,),
)
return viewpoint_op
def compute_vp_loss(self, pred, GT):
"""
Compute loss for magnitude heads using negdot
Compute loss for direction heads using crossentropy
"""
Loss_c2s2 = self.loss_mag.compute_loss(
[
"a",
# "e",
# "t",
],
pred["logprob_xxyy"],
dict(
a=GT["ccss_a"],
# e=GT["ccss_e"],
# t=GT["ccss_t"],
),
)
Loss_direc = self.loss_direc.compute_loss(
[
"a",
# "e",
# "t",
],
pred["sign_x_y"],
dict(
a=GT["sign_a"],
# e=GT["sign_e"],
# t=GT["sign_t"],
),
)
Loss = odict(
ccss_a=Loss_c2s2["a"] * self.balance_weight,
# ccss_e=Loss_c2s2["e"] * self.balance_weight,
# ccss_t=Loss_c2s2["t"] * self.balance_weight,
#
sign_a=Loss_direc["a"],
# sign_e=Loss_direc["e"],
# sign_t=Loss_direc["t"],
)
return Loss
@staticmethod
def compute_vp_pred(network_op):
lmap = torch.FloatTensor([[1, 1], [1, -1], [-1, 1], [-1, -1]])
lmap = Variable(lmap).cuda()
bsize, nobjs = network_op["logprob_xxyy"]["a"].size()[:2]
vp_pred = odict()
for tgt in network_op["logprob_xxyy"].keys():
# Get the magnitude from outputs
logprob_xx_yy = network_op["logprob_xxyy"][tgt]
abs_cos_sin = torch.sqrt(torch.exp(logprob_xx_yy))
vp_pred["ccss_" + tgt] = torch.exp(logprob_xx_yy)
# Get the direction from outputs
sign_ind = torch.argmax(
network_op["sign_x_y"][tgt].view(bsize, nobjs, 4), dim=2,
)
vp_pred["sign_" + tgt] = sign_ind
i_inds = torch.arange(bsize).repeat_interleave(nobjs)
o_inds = torch.arange(nobjs).repeat(bsize)
direc_cos_sin = lmap.expand(bsize, nobjs, 4, 2)[
i_inds, o_inds, sign_ind.flatten()
]
direc_cos_sin = direc_cos_sin.view(bsize, nobjs, 2)
cos_sin = abs_cos_sin.view(bsize, nobjs, 2) * direc_cos_sin
vp_pred[tgt] = torch.atan2(cos_sin[:, :, 1], cos_sin[:, :, 0]) #
return vp_pred
@staticmethod
def compute_gt_flip(network_op, dtach=False):
"""
Takes a prediction for an image and computes the GT for the corresponding flipped image.
For a flipped image, the magnitude of azimuth, elevation and tilt have to be the same.
The signs/ directions for azimuth and tilt are flipped.
So, for correct image : [ a, e, t] (from the input)
For flipped image : [-a, e, -t] (produce GT representation for this)
MAP :
+, + -> +, - | 0 -> 1
+, - -> +, + | 1 -> 0
-, + -> -, - | 2 -> 3
-, - -> -, + | 3 -> 2
"""
lmap = torch.FloatTensor([[1, 1], [1, -1], [-1, 1], [-1, -1]])
lmap = Variable(lmap).cuda()
batchsize = network_op["logprob_xxyy"]["a"].size(0)
vp_pred = edict()
for tgt in network_op["logprob_xxyy"].keys():
# Get the magnitude from outputs
logprob_xx_yy = network_op["logprob_xxyy"][tgt]
abs_cos_sin = torch.sqrt(torch.exp(logprob_xx_yy))
vp_pred["ccss_" + tgt] = torch.exp(logprob_xx_yy)
# Get the direction from outputs
sign_ind = torch.argmax(
network_op["sign_x_y"][tgt].view(
network_op["sign_x_y"][tgt].shape[0], 4
),
dim=1,
)
if tgt == "a" or tgt == "t":
sign_ind_flipped = (1 - sign_ind % 2) + (2 * (sign_ind // 2))
else:
sign_ind_flipped = sign_ind
vp_pred["sign_" + tgt] = sign_ind_flipped
item_inds = torch.from_numpy(np.arange(batchsize)).cuda()
sign_cos_sin = lmap.expand(batchsize, 4, 2)[item_inds, sign_ind]
cos_sin = abs_cos_sin.view(abs_cos_sin.shape[0], 2) * sign_cos_sin
vp_pred[tgt] = torch.atan2(cos_sin[:, 1], cos_sin[:, 0]) #
return vp_pred
# def expand_indices(indices, num_reps):
# return indices.unsqueeze(-1).expand(*indices.size(), num_reps)
# def get_topk_and_complement_indices(score, k=10):
# values, indices = score.topk(k, -1)
# topk_complement = torch.ones_like(score, dtype=torch.bool)
# topk_complement = topk_complement.scatter_(1, indices, torch.tensor(False))
# return (values, indices), topk_complement