-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathntskem.go
300 lines (266 loc) · 6.63 KB
/
ntskem.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
package go_ntskem
import (
"crypto/rand"
"encoding/binary"
"strconv"
"strings"
ff2 "github.com/seemenkina/go-ntskem/ff"
"github.com/seemenkina/go-ntskem/matrix"
"github.com/seemenkina/go-ntskem/poly"
"golang.org/x/crypto/sha3"
)
const (
tau = 64 // tau = (d - 1) / 2
l = 256
k = 3328
n = 4096
r = 768 // n-k
)
type PublicKey struct {
Q matrix.MatrixFF
tau int // const
l int
}
type PrivateKey struct {
a []uint16
h []uint16
p []uint16 // vector of length n
z []uint16 // random number of length l
pk PublicKey
}
type NTSKEM struct {
ff *ff2.FF
publKey PublicKey
privKey PrivateKey
n int
}
func (nk *NTSKEM) New(m int) {
nk.ff = &ff2.FF{}
nk.ff.New(m)
nk.n = 1 << m
}
// GenerateKey returns a new public/private key pair
func (nk *NTSKEM) GenerateKey() {
// // Step 1: Generate Goppa polynomial of degree τ
// g := poly.Polynomial{}
// g.GenerateGoppaPol(tau, 1<<nk.ff.M)
// for !nk.ff.CheckGoppaPoly(&g) {
// g := poly.Polynomial{}
// g.GenerateGoppaPol(tau, 1<<nk.ff.M)
// }
g := poly.Polynomial{}
g.New(1 << nk.ff.M)
g.SetDegree(tau)
rawHex := "1EE 677 162 5EC 23B AA7 076 A65 A3B 519 000 B04 F3C E70 504 C07 B46 BC3 045 BAA 95B 807 6DD EE4 FF8 B02 362 500 077 42D 6F3 BB0 163 049 D0E D90 165 FDF 1A9 83D FCA CC9 FB4 C08 110 84B 0AB 330 9E3 985 DE7 17B 2A4 A95 9C6 BF1 DD8 8A9 2AC 652 4ED 2A2 CEA D1C 001"
rawHex = strings.Replace(rawHex, " ", "", -1)
// rawHex = strings.ToLower(rawHex)
for i := 0; len(rawHex) > 0; i++ {
b, _ := strconv.ParseUint(rawHex[:3], 16, 64)
g.Pol[i] = uint16(b)
rawHex = rawHex[3:]
}
// Step 2: Randomly generate a permutation vector p of length n
p := poly.GeneratePermuteVector()
// Step 3: Construct a generator matrix
Q := matrix.MatrixFF{}
a, h := Q.CreateMatrixG(&g, p, nk.ff, tau)
// Step 4: Generate random number of length l
z := make([]uint16, 16)
buf := make([]byte, 32)
_, _ = rand.Read(buf)
for i := 0; i < len(z); i++ {
z[i] = binary.LittleEndian.Uint16(buf[i : i+2])
}
// Step 5: Partition the vectors a and h. Return a = (ab|ac), h = (hb|hc).
// Parts aa and ha of length k - l
aSt, hSt := a[k-l:], h[k-l:]
pk := PublicKey{
Q: Q,
tau: tau,
l: l,
}
sk := PrivateKey{
a: aSt,
h: hSt,
p: p,
z: z,
pk: pk,
}
nk.privKey = sk
nk.publKey = pk
}
// Encapsulate uses a given public key produce random key
// and compute ciphertext encapsulating this key
func (pk PublicKey) Encapsulate() ([]uint16, []uint16) {
// 1. Random error vector
e := poly.RandomVector(n, tau)
// 2. Partition e
ea := e[:k-l]
eb := e[k-l : k]
ec := e[k:n]
// 3. Compute ke, using pseudorandom func - sha3
ke := sha3.Sum256(BitArrayToByteArray(e))
keInBits := ByteArrayToBitArray(ke[:32])
// 4. Construct message vector
/*var m = ea
var i uint16 = 0
for ; i < l; i++ {
m = append(m, keInBits[i])
}*/
var m = make([]uint16, k) //ИЗМЕНЕНО
var i uint16 = 0
for ; i < k-l; i++ {
//m = append(m, keInBits[i])
m[i] = ea[i]
}
for ; i < k; i++ {
m[i] = keInBits[i-k+l]
}
// 5. Encoding of m with Q:
cb := poly.PolySum(keInBits, eb)
cc := poly.PolySum(pk.Q.PolyOnMatriceMult(m), ec)
// cc := PolySum(matrix.PolyOnMatriceMult(m, pk.Q), ec)
var co []uint16
for i = 0; i < l; i++ {
co = append(co, cb[i])
}
for i = 0; i < uint16(len(cc)); i++ {
co = append(co, cc[i])
}
var seed []uint16
for i = 0; i < l; i++ {
seed = append(seed, keInBits[i])
}
for i = 0; i < uint16(len(e)); i++ {
seed = append(seed, e[i])
}
kr := sha3.Sum256(BitArrayToByteArray(seed))
return ByteArrayToBitArray(kr[:32]), co
}
// Decapsulate uses a private key to decrypt a ciphertext
func (nk *NTSKEM) Decapsulate(c []uint16) []uint16 {
// field gen
var ff = nk.ff
/*ab :=a[:l]
ac:=a[l:]
hb := h[:l]
hc:=h[l:]*/
// 1.b Build Transpose matrix.
//Q := matrix.MatrixFF{}
//Q.New(l+r, 2*tau)
//Q.CreateMatrixH(sk.a, sk.h, ff)
// 1.c Compute all 2τ syndromes of c*
//var s = Q.PolyOnMatriceMult(c)
var s = make([]uint16, 2*tau)
for i:=0; i < n-k+l; i++ {
s[0] = ff.Add(s[0],ff.Mul(c[i], nk.privKey.h[i]))
}
for i:=1; i< 2*tau; i++{
for j:=0; j < n-k+l; j++ {
nk.privKey.h[j] = ff.Mul(nk.privKey.h[j], nk.privKey.a[j])
}
for j:=0; j < n-k+l; j++ {
s[i] = ff.Add(s[i],ff.Mul(c[j], nk.privKey.h[j]))
}
}
// 1.d Compute the error locator polynomial σ(x) and the first coordinate error indicator ξ
var sigma, xi = ff.BerlekampMasseyAlgorithm(s)
// 1.e Evaluate the polynomial σ(x) on all elements of F2m
var A = ff.Roots(sigma)
// 1.f obtain the error vector e`
e := make([]uint16, n)
for i := 0; i < n; i++ {
if A[i] == 0 {
e[i] = 1
}
}
if xi == 1 {
e[0] = 1
}
// 2.Apply the permutation
for i := 0; i < len(e); i++ {
e[i] = e[nk.privKey[i]]
}
// 3.Consider e = (ea | eb | ec), and compute ke = cb − eb.
eb := e[k-l : k]
cb := c[:l]
cc := c[l:]
ke := poly.PolySum(eb, cb)
Hl := sha3.Sum256(BitArrayToByteArray(e))
var q = BitArrayToByteArray(ke)
// 4 Verify that H`(e) = ke and hw(e) = τ...
str1 := string(Hl[:])
str2 := string(q[:])
hw := uint16(0)
for i := 0; i < len(e); i++ {
if e[i] == 1 {
hw++
}
}
var out []uint16
if str1 == str2 && hw == tau {
var out = ke
for i:=0 ; i < len(e); i++ {
out = append(out, e[i])
}
var kr = sha3.Sum256(BitArrayToByteArray(out))
return ByteArrayToBitArray(kr[:])
}
} else {
var zInBitArray []uint16
for i:=0; i< len(nk.privKey.z); i++ {
for j:=0; j < 8; j++ {
zInBitArray = append(zInBitArray, nk.privKey.z[i] & 0x0001)
nk.privKey.z[i] >>= 1
}
}
println()
print("sk.z ")
for i:=0; i < len(nk.privKey.z); i++ {
print(" ", nk.privKey.z[i])
}
var out []uint16 //zInBitArray
//1a
for i:=0 ; i < k-l; i++ {
out = append(out, 1)
}
//cb
for i:=0 ; i < l; i++ {
out = append(out, cb[i])
}
//cc
for i:=0 ; i < l; i++ {
out = append(out, cc[i])
}
var kr = sha3.Sum256(BitArrayToByteArray(out))
return ByteArrayToBitArray(kr[:])
}
kr := sha3.Sum256(BitArrayToByteArray(out))
return ByteArrayToBitArray(kr[:])
}
// Converts BitArray to ByteArray
func BitArrayToByteArray(BitArray []uint16) []byte {
println()
print("BITARRAYLEN: ", len(BitArray))
var ByteArray []byte = make([]byte, len(BitArray)/8)
for i := 0; i < len(BitArray); i++ {
ByteArray[i/8] = ByteArray[i/8] | byte(BitArray[i])
if i%8 != 7 {
ByteArray[i/8] <<= 1
}
}
return ByteArray
}
// added
// Converts ByteArray to BitArray
func ByteArrayToBitArray(ByteArray []byte) []uint16 {
ByteArraylen := len(ByteArray)
var BitArray []uint16 = make([]uint16, ByteArraylen*8)
for i := 0; i < ByteArraylen; i++ {
for j := 7; j >= 0; j-- {
BitArray[8*i+j] = uint16(ByteArray[i]) & 1
ByteArray[i] >>= 1
}
}
return BitArray
}