-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
56 lines (41 loc) · 1.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2 import model_zoo
from PIL import Image
import numpy as np
from util import visualize, set_background
set_background('./bg.png')
# set title
st.title('Brain MRI tumor detection')
# set header
st.header('Please upload an image')
# upload file
file = st.file_uploader('', type=['png', 'jpg', 'jpeg'])
# load model
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file('COCO-Detection/retinanet_R_101_FPN_3x.yaml'))
cfg.MODEL.WEIGHTS = './train/output/model_0002999.pth'
cfg.MODEL.DEVICE = 'cpu'
predictor = DefaultPredictor(cfg)
# load image
if file:
image = Image.open(file).convert('RGB')
image_array = np.asarray(image)
# detect objects
outputs = predictor(image_array)
threshold = 0.5
# Display predictions
preds = outputs["instances"].pred_classes.tolist()
scores = outputs["instances"].scores.tolist()
bboxes = outputs["instances"].pred_boxes
bboxes_ = []
for j, bbox in enumerate(bboxes):
bbox = bbox.tolist()
score = scores[j]
pred = preds[j]
if score > threshold:
x1, y1, x2, y2 = [int(i) for i in bbox]
bboxes_.append([x1, y1, x2, y2])
# visualize
visualize(image, bboxes_)