-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.cpp
96 lines (81 loc) · 2.24 KB
/
model.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// Implementation of linear learning models
//
// Copyright (C) Heidelberg University
//
// Author: Sascha Fendrich
//
// This file is part of Sol.
//
// Sol is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Sol is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with Sol. If not, see <http://www.gnu.org/licenses/>.
#include <fstream>
#include "model.h"
#include "sparse_data_format.h"
#include "tiny_log.h"
void Model::Init (int num_submodels, int num_features)
{
for (int i = 0; i < num_submodels; ++i)
{
WeightVector w (num_features);
submodels_.push_back (w);
}
}
void Model::Read (const char *file_name)
{
std::ifstream ifs (file_name);
std::string line;
SparseVector s;
for (int i = 0; i < submodels_.size (); ++i)
{
getline (ifs, line);
const char *pos = sdf_parse_line (line.c_str (), s);
if (*pos && (*pos != '#'))
{
FATAL << "Error in input:" << i + 1 << ':' << pos - line.c_str () + 1
<< std::endl;
// TODO: error handling
}
submodels_[i].clear ();
submodels_[i].PlusEquals (s);
submodels_[i].set_bias (s.target ());
}
}
void Model::Write (const char *file_name) // TODO: error handling
{
std::ofstream ofs (file_name);
for (int j = 0; j < submodels_.size (); ++j)
{
ofs << submodels_[j].bias () << " ";
for (int i = 0; i < submodels_[0].size (); ++i)
{
float weight = submodels_[j].GetWeight (i);
if (weight != 0)
ofs << i << ':' << weight << ' ';
}
ofs << std::endl;
}
}
void Model::RegularizeL1 (const float factor)
{
for (int i = 0; i < num_submodels (); ++i)
{
submodels_[i].RegularizeL1 (factor);
}
}
void Model::RegularizeL2 (const float factor)
{
for (int i = 0; i < num_submodels (); ++i)
{
submodels_[i].RegularizeL2 (factor);
}
}