-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweight_vector.cpp
108 lines (91 loc) · 2.56 KB
/
weight_vector.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// Implementation of dense weight vectors
//
// Copyright (C) 2012 Heidelberg University
//
// Author: Sascha Fendrich
//
// This file is part of Sol.
//
// Sol is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Sol is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with Sol. If not, see <http://www.gnu.org/licenses/>.
#include <cstdlib>
#include <cstring>
#include "sparse_vector.h"
#include "weight_vector.h"
WeightVector::WeightVector (int size)
:size_(size)
,bias_(0)
,squaredL2Norm_(0)
,scale_(1.0)
{
vector_ = new float[size_];
memset (vector_, 0, size_ * sizeof (float));
}
WeightVector::WeightVector (const WeightVector ©)
{
size_ = copy.size_;
bias_ = copy.bias_;
scale_ = copy.scale_;
squaredL2Norm_ = copy.squaredL2Norm_;
vector_ = new float[size_];
memcpy (vector_, copy.vector_, size_* sizeof (float));
}
WeightVector::~WeightVector ()
{
delete[] vector_;
}
void WeightVector::PlusEquals (const SparseVector &rhs)
{
float accum = 0;
for (SparseVector::const_iterator i = rhs.begin ();
i != rhs.end (); ++i)
{
accum += i->second * vector_[i->first];
vector_[i->first] += i->second / scale_;
}
squaredL2Norm_ += rhs.squaredL2Norm () - 2 * scale_ * accum;
}
void WeightVector::PlusEquals (float scalar, const SparseVector &rhs)
{
float accum = 0;
for (SparseVector::const_iterator i = rhs.begin ();
i != rhs.end (); ++i)
{
accum += i->second * vector_[i->first];
vector_[i->first] += scalar * i->second / scale_;
}
squaredL2Norm_ += scalar *
(scalar * rhs.squaredL2Norm () - 2 * scale_ * accum);
}
float WeightVector::InnerProduct (const SparseVector &rhs) const
{
float ip = 0;
for (SparseVector::const_iterator i = rhs.begin ();
i != rhs.end (); ++i)
{
ip += vector_[i->first] * i->second;
}
return scale_ * ip;
}
void WeightVector::RegularizeL1 (const float factor)
{
for (int i = 0; i < size (); ++i)
{
float weight = GetWeight (i);
weight -= sign (weight) * factor;
// Truncate
if (abs (weight) < factor)
weight = 0;
SetWeight (i, weight);
}
}