-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplot_points.py
156 lines (121 loc) · 4.6 KB
/
plot_points.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from scipy.spatial import Voronoi, voronoi_plot_2d
import sys
from matplotlib.ticker import FuncFormatter
cdict = {'red': [(0.0, 0.0, 0.0),
(0.33, 0.0, 0.0),
(0.66, 1.0, 1.0),
(1.0, 1.0, 1.0)],
'blue': [(0.0, 0.0, 0.0),
(0.33, 1.0, 1.0),
(0.66, 0.0, 0.0),
(1.0, 0.0, 0.0)],
'green': [(0.0, 0.0, 0.0),
(0.33, 0.0, 0.0),
(0.66, 0.0, 0.0),
(1.0, 1.0, 1.0)]}
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', cdict, 256)
def scale(x, pos):
'The two args are the value and tick position'
return '%1.1f' % (x*10.0 - 5.0)
def scale2(x, pos):
'The two args are the value and tick position'
return '%1.1f' % (x*10.0 - 5.0)
def voronoi_finite_polygons_2d(vor, radius=None):
"""
Reconstruct infinite voronoi regions in a 2D diagram to finite
regions.
Parameters
----------
vor : Voronoi
Input diagram
radius : float, optional
Distance to 'points at infinity'.
Returns
-------
regions : list of tuples
Indices of vertices in each revised Voronoi regions.
vertices : list of tuples
Coordinates for revised Voronoi vertices. Same as coordinates
of input vertices, with 'points at infinity' appended to the
end.
"""
if vor.points.shape[1] != 2:
raise ValueError("Requires 2D input")
new_regions = []
new_vertices = vor.vertices.tolist()
center = vor.points.mean(axis=0)
if radius is None:
radius = vor.points.ptp().max()
# Construct a map containing all ridges for a given point
all_ridges = {}
for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):
all_ridges.setdefault(p1, []).append((p2, v1, v2))
all_ridges.setdefault(p2, []).append((p1, v1, v2))
# Reconstruct infinite regions
for p1, region in enumerate(vor.point_region):
vertices = vor.regions[region]
if all(v >= 0 for v in vertices):
# finite region
new_regions.append(vertices)
continue
# reconstruct a non-finite region
ridges = all_ridges[p1]
new_region = [v for v in vertices if v >= 0]
for p2, v1, v2 in ridges:
if v2 < 0:
v1, v2 = v2, v1
if v1 >= 0:
# finite ridge: already in the region
continue
# Compute the missing endpoint of an infinite ridge
t = vor.points[p2] - vor.points[p1] # tangent
t /= np.linalg.norm(t)
n = np.array([-t[1], t[0]]) # normal
midpoint = vor.points[[p1, p2]].mean(axis=0)
direction = np.sign(np.dot(midpoint - center, n)) * n
far_point = vor.vertices[v2] + direction * radius
new_region.append(len(new_vertices))
new_vertices.append(far_point.tolist())
# sort region counterclockwise
vs = np.asarray([new_vertices[v] for v in new_region])
c = vs.mean(axis=0)
angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])
new_region = np.array(new_region)[np.argsort(angles)]
# finish
new_regions.append(new_region.tolist())
return new_regions, np.asarray(new_vertices)
points = np.loadtxt(sys.argv[1])
# points = np.loadtxt('generated_points_10000_2.dat')
rowsPoints, colsPoints = np.shape(points)
print 'Centroids: rows=',rowsPoints,' columns=',colsPoints
descriptorsFitnesses = np.loadtxt(sys.argv[2])[:,0:colsPoints+1]
descriptors = descriptorsFitnesses[:,0:2]
fitnesses = descriptorsFitnesses[:,2:3]
print np.shape(fitnesses)
rowsDescriptors, colsDescriptors = np.shape(descriptors)
print 'Loaded Descriptors: rows=',rowsDescriptors,' columns=',colsDescriptors
# compute Voronoi tesselation
vor = Voronoi(points)
# plot
regions, vertices = voronoi_finite_polygons_2d(vor)
cmap=my_cmap
norm = matplotlib.colors.Normalize(vmin=min(fitnesses), vmax=max(fitnesses))
normalizedFitnesses = (fitnesses - min(fitnesses)) / (max(fitnesses) - min(fitnesses))
fig = plt.figure()
ax = fig.add_subplot(111)
# colorize
i = 0
for region in regions:
polygon = vertices[region]
ax.fill(*zip(*polygon), color=cmap(norm(fitnesses[i]))[0])
i = i+1
sc = plt.scatter(descriptors[:,0], descriptors[:,1], c=fitnesses, cmap=my_cmap, s=60, zorder=0)
plt.colorbar(sc)
ax.set_ylim(0,1)
ax.set_xlim(0,1)
ax.yaxis.set_major_formatter(FuncFormatter(scale))
ax.xaxis.set_major_formatter(FuncFormatter(scale2))
plt.show()