-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifier_C.cpp
629 lines (561 loc) · 23.1 KB
/
Classifier_C.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
// g++ -m64 -std=c++11 -o essential-DS Graph.cpp essential-DS.cpp computeOrbits.cpp /home/stephen/code/nauty26r11/nauty.a -I /home/stephen/code/nauty26r11 -I /home/stephen/code/gurobi752/linux64/include/ -L /home/stephen/code/gurobi752/linux64/lib/ -lgurobi_c++ -lgurobi75 -lm
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <set>
#include <string>
#include <algorithm>
#include <iterator>
#include <sstream>
#include <chrono>
#include "gurobi_c++.h"
#include "Graph.h"
//#include "computeOrbits.h"
#include "saucy-orbits.h"
using namespace std;
struct Classifications
{
int MDSsize=0;
int byOrbit=0;
int byTrueOrbit=0;
int byessentialrule=0;
int bySubset=0;
int intswap=0;
int byredundantrule=0;
int MDStest=0;
boost::dynamic_bitset<> MDS; //bitset for the initial MDS
boost::dynamic_bitset<> essential; //bitset of essential vertices
boost::dynamic_bitset<> intermittent; //bitset of intermittent vertices
boost::dynamic_bitset<> redundant; //bitset of redundant vertices
boost::dynamic_bitset<> done; //bitset of vertices that have been classified
boost::dynamic_bitset<> orbitComputed; //bitset
std::vector<std::vector<int> > orbits;
std::vector<std::vector<int> > propersubset;
std::vector<std::vector<int> > propersuperset;
std::vector<std::vector<int> > subset;
std::vector<GRBVar> variables;
};
bool maxSort(int i, int j) {return (i>j);}
void printVec(std::vector<int>& v)
{
const int numV=v.size();
for (int i = 0; i < numV; ++i)
{
cout<<v[i]<<" ";
}
cout<<"\n";
}
void printBitsSet(boost::dynamic_bitset<>& v)
{
const int numV=v.size();
for (int i = 0; i < numV; ++i)
{
if (v[i])
{
cout<<i<<" ";
}
}
cout<<"\n";
}
//determine orbits with call to nauty
std::vector<std::vector<int> > createOrbits(std::vector<boost::dynamic_bitset<> >& bitsets, int num_edges)
{
std::vector<std::vector<int> > orbitSets;
//std::vector<std::vector<int> > denseorbitSets;
cout<<"starting orbits\n";
//orbitSets=sparse_orbits(bitsets,num_edges);
//denseorbitSets=orbits(bitsets);
int numV=bitsets.size();
for (int i = 0; i < numV; ++i)
{
if (orbitSets[i].size()>1)
{
for (int j = 1; j < orbitSets[i].size(); ++j)
{
orbitSets[orbitSets[i][j]]=orbitSets[i];
}
}
}
cout<<orbitSets.size()<<"\n";
return orbitSets;
}
//determine orbits with saucy
std::vector<std::vector<int> > createOrbits_saucy(Graph& g, std::vector<boost::dynamic_bitset<> >& bitsets)
{
std::vector<std::vector<int> > orbitSets;
orbitSets=find_auto_get_orbits(g,bitsets);
std::vector<std::vector<int> > orbits(g.numVertices());
for (int i = 0; i < orbitSets.size(); ++i)
{
for (int j = 0; j < orbitSets[i].size(); ++j)
{
//cout<<nauty_orbits[i][j]<<" ";
orbits[orbitSets[i][j]]=orbitSets[i];
}
//cout<<"\n";
}
return orbits;
}
//create a Gurobi model
void createModel(GRBModel& model, std::vector<boost::dynamic_bitset<> >& bitsets, Classifications& classes, Graph& g)
{
int numV=bitsets.size();
for (int i = 0; i < numV; ++i)
{
//classes.subset[i].resize(numV);
bitsets[i]=g.closedNeighbors(i);
classes.variables[i]=model.addVar(0,1,0,GRB_BINARY,to_string(i));
}
GRBLinExpr expr, objexpr;
objexpr=0;
size_t index,index2;
for (int i = 0; i < numV; ++i)
{
objexpr+=classes.variables[i];
expr=0;
index=bitsets[i].find_first();
while(index!=boost::dynamic_bitset<>::npos)
{
if (i!=index && bitsets[index].is_subset_of(bitsets[i]))
{
//cout<<index<<" is subset of "<<i<<"\n";
classes.subset[i].push_back(index);
}
if (i!=index && bitsets[index].is_proper_subset_of(bitsets[i]))
{
//cout<<index<<" is proper subset of "<<i<<"\n";
classes.propersubset[i].push_back(index);
classes.propersuperset[index].push_back(i);
}
expr+=classes.variables[index];
index=bitsets[i].find_next(index);
}
model.addConstr(expr>=1,to_string(i));
}
model.setObjective(objexpr,GRB_MINIMIZE);
model.set(GRB_IntParam_OutputFlag,0);
return;
}
//classify all unclassified vertices that share an orbit with v
int classifyOrbit(Classifications& classes, int v, int classification)
{
int num_classified=0;
//cout<<"classifying "<<v<<" in orbits code as "<<classification<<"\n";
//cout<<classes.orbits.size()<<"\n";
if (classes.orbits[v].size()>1)
{
//cout<<"the first if statement checked out\n";
//cout<<"orbits size "<<classes.orbits[v].size()<<"\n";
for (int i = 0; i < classes.orbits[v].size(); ++i)
{
//cout<<i<<" "<<classes.orbits[v][i]<<"\n";
if (!classes.done[classes.orbits[v][i]])
{
if(classification==2)
{
classes.essential[classes.orbits[v][i]]=true;
classes.done[classes.orbits[v][i]]=true;
classes.orbitComputed[classes.orbits[v][i]]=true;
classes.byOrbit++;
num_classified++;
}
else if (classification==1)
{
classes.intermittent[classes.orbits[v][i]]=true;
classes.done[classes.orbits[v][i]]=true;
classes.orbitComputed[classes.orbits[v][i]]=true;
classes.byOrbit++;
num_classified++;
}
else if (classification==0)
{
//cout<<"setting redundant\n";
classes.redundant[classes.orbits[v][i]]=true;
//cout<<"setting done\n";
classes.done[classes.orbits[v][i]]=true;
//cout<<"setting orbitComputed\n";
classes.orbitComputed[classes.orbits[v][i]]=true;
classes.byOrbit++;
num_classified++;
//cout<<"done\n";
}
else{
cout<<"error in classifyOrbit, improper classification given\n";
}
}
}
}
return num_classified;
}
//Rule 1 in paper essential subset rule if vertex is subset of essential vertex then it is redunant
void essentialSubset(Classifications& classes, int v)
{
int vertex;
for (int i = 0; i < classes.propersubset[v].size(); ++i)
{
vertex=classes.propersubset[v][i];
if(!classes.done[vertex])
{
classes.redundant[vertex]=true;
classes.bySubset++;
classes.done[vertex]=true;
classes.bySubset+=classifyOrbit(classes,vertex,0);
classes.variables[vertex].set(GRB_DoubleAttr_UB,0.0);
}
}
return;
}
//two pendant rule
void twoPendantRule(std::vector<boost::dynamic_bitset<> >& bitsets, Graph& g)
{
std::vector<int> gates2pendants;
std::vector<int> pendantEssential;
int numpendant;
for (int i = 0; i < bitsets.size(); ++i)
{
numpendant=0;
for (int j = 0; j < bitsets.size(); ++j)
{
if (bitsets[i][j] && i!=j)
{
if(bitsets[j].count()==2)
{
numpendant++;
}
}
}
if(numpendant>1)
pendantEssential.push_back(i);
}
cout<<"Number pendantEssential: "<<pendantEssential.size()<<"\n";
return;
}
//Rule 4 in paper implementation of essential rule
bool essentialRule2(Classifications& classes, std::vector<boost::dynamic_bitset<> >& bitsets, Graph& g, int v)
{
//bool isEssential;
//boost::dynamic_bitset<> subgraphvertices(g.numVertices()),nonsubgraphvertices(g.numVertices()),coveredvertices(g.numVertices()),uncovered(g.numVertices());
//std::vector<int> subgraph;
std::vector<int> neighborhoods;
int numV=g.numVertices();
for (int i = 0; i < classes.propersubset[v].size()-1; ++i)
{
for (int j = i+1; j < classes.propersubset[v].size(); ++j) //check all pairs of proper subset vertices of v
{
if ((bitsets[classes.propersubset[v][i]] & bitsets[classes.propersubset[v][j]]).count()==1) //check if only common neighbor of i and j is v
{
//cout<<"two proper subsets\n";
neighborhoods.clear();
for (int k = 0; k < numV; ++k)
{
if (k!=v)
{
if (bitsets[classes.propersubset[v][i]][k])
{
neighborhoods.push_back(k);
}
if (bitsets[classes.propersubset[v][j]][k])
{
neighborhoods.push_back(k);
}
}
}
if (includes(classes.propersubset[v].begin(), classes.propersubset[v].end(),neighborhoods.begin(), neighborhoods.end())) //check if all common neighborhoods are proper subsets of v
{
return true;
}
}
}
}
return false;
}
//Rule 3 in paper perform intermittent swap on unclassiied MDS vertices
void intermittentSwap(Classifications& classes, std::vector<boost::dynamic_bitset<> >& bitsets, Graph& g)
{
int numV=g.numVertices();
size_t index,index2;
boost::dynamic_bitset<> private_neighbors;
index=classes.MDS.find_first();
while(index!=boost::dynamic_bitset<>::npos)
{
private_neighbors=bitsets[index];
//deterime if remaining MDS vertices are essential or intermittent
index2=classes.MDS.find_first();
while(index2!=boost::dynamic_bitset<>::npos) //determine private neighbors of vertex in MDS
{
if (index!=index2)
{
private_neighbors=private_neighbors-bitsets[index2];
}
index2=classes.MDS.find_next(index2);
}
for (int i = 0; i < numV; ++i)
{
if (i!=index && private_neighbors.is_subset_of(bitsets[i])) //check if private neighbors are subset of another vertex if so both vertices are intermittent
{
if (!classes.done[index])
{
classes.done[index]=true;
classes.intswap++;
classes.intermittent[index]=true;
//cout<<"classifying by orbits\n";
classes.intswap+=classifyOrbit(classes,index,1);
//cout<<"done classifying by orbits\n";
}
if (!classes.done[i])
{
classes.done[i]=true;
classes.intswap++;
classes.intermittent[i]=true;
//cout<<"classifying by orbits\n";
classes.intswap+=classifyOrbit(classes,i,1);
}
}
}
index=classes.MDS.find_next(index);
}
return;
}
//call gurobi and solve model
int solve_model(GRBModel& model)
{
model.optimize();
return model.get(GRB_IntAttr_Status);
}
//for unclassified MDS vertices solve ILP-exclude to determine essential or intermittent
void essential_or_intermittent(Classifications& classes, std::vector<boost::dynamic_bitset<> >& bitsets, GRBModel& model, std::vector<float>& MDS_compute_times)
{
std::chrono::time_point<std::chrono::system_clock> start, end;
int num_classified;
int status;
size_t index;
index=classes.MDS.find_first();
while(index!=boost::dynamic_bitset<>::npos)
{
if (!classes.done[index])
{
classes.variables[index].set(GRB_DoubleAttr_UB,0.0);
start=std::chrono::system_clock::now();
status=solve_model(model);
end=std::chrono::system_clock::now();
std::chrono::duration<float> elapsed_seconds = end - start;
MDS_compute_times.push_back(elapsed_seconds.count());
classes.MDStest++;
classes.variables[index].set(GRB_DoubleAttr_UB,1.0);
if (status==2 && classes.MDSsize==model.get(GRB_DoubleAttr_ObjVal))
{
classes.intermittent[index]=true;
classes.done[index]=true;
num_classified=classifyOrbit(classes,index,1);
classes.byTrueOrbit+=num_classified;
}
else
{
classes.essential[index]=true;
classes.variables[index].set(GRB_DoubleAttr_LB,1.0);
classes.done[index]=true;
num_classified=classifyOrbit(classes,index,2);
classes.byTrueOrbit+=num_classified;
essentialSubset(classes,index);
}
}
index=classes.MDS.find_next(index);
}
return;
}
//Rule 2 in paper determine if all vertices in a closed neighborhood are adjacent to an essential vertex
void redundantRule(Classifications& classes, std::vector<boost::dynamic_bitset<> >& bitsets)
{
int numV=bitsets.size();
bool allAdjacentToEssential;
size_t index;
for (int i = 0; i < numV; ++i)
{
if (!classes.done[i]&&!classes.MDS[i])
{
allAdjacentToEssential=true;
index=bitsets[i].find_first();
while(index!=boost::dynamic_bitset<>::npos)
{
if ((bitsets[index]&classes.essential).count()==0)
{
allAdjacentToEssential=false;
break;
}
index=bitsets[i].find_next(index);
}
if (allAdjacentToEssential)
{
classes.redundant[i]=true;
classes.byredundantrule++;
classes.done[i]=true;
classes.byredundantrule+=classifyOrbit(classes,i,0);
classes.variables[i].set(GRB_DoubleAttr_UB,0.0);
}
}
}
return;
}
//for unclassified vertices solve ILP-include to determine redundant or intermittent
void redundant_or_intermittent(Classifications& classes, std::vector<boost::dynamic_bitset<> >& bitsets, GRBModel& model,std::vector<float>& MDS_compute_times)
{
std::chrono::time_point<std::chrono::system_clock> start, end;
int status;
int numV=bitsets.size();
for (int i = 0; i < numV; ++i)
{
if (!classes.done[i]&&!classes.MDS[i])
{
classes.variables[i].set(GRB_DoubleAttr_LB,1.0);
start=std::chrono::system_clock::now();
status=solve_model(model);
end=std::chrono::system_clock::now();
std::chrono::duration<float> elapsed_seconds = end - start;
MDS_compute_times.push_back(elapsed_seconds.count());
classes.MDStest++;
classes.variables[i].set(GRB_DoubleAttr_LB,0.0);
if (status==2 && classes.MDSsize==model.get(GRB_DoubleAttr_ObjVal))
{
classes.intermittent[i]=true;
classes.done[i]=true;
classes.byTrueOrbit+=classifyOrbit(classes,i,1);
}
else
{
classes.redundant[i]=true;
classes.done[i]=true;
classes.byTrueOrbit+=classifyOrbit(classes,i,0);
classes.variables[i].set(GRB_DoubleAttr_UB,0.0);
}
}
}
return;
}
int main(int argc, char const *argv[])
{
ifstream graphFile(argv[1]); //file with edge list of graph
ofstream outputFile(argv[2]);
Graph g; //create graph object
cout<<"reading graph\n";
g.readGraph(graphFile); //read in graph from file
graphFile.close();
cout<<g.numVertices()<<" vertices and "<<g.numEdges()<<" edges\n";
GRBEnv* env=NULL; //initialize Gurobi
env = new GRBEnv(); //set up Gurobi enviornment
GRBModel model = GRBModel(*env); //initialize Gurobi model object
const int numV=g.numVertices();
std::vector<boost::dynamic_bitset<> > bitsets(numV); //adjacency matrix
std::vector<GRBConstr> constraints(numV); //ILP contraints
struct Classifications classes; //struct to hold all MDS and class information
classes.MDS.resize(numV); //initial MDS as bitset
classes.essential.resize(numV); //essential vertices as bitset
classes.intermittent.resize(numV); //intermittent vertices as bitset
classes.redundant.resize(numV); //redundant vertices as bitset
classes.done.resize(numV); //classified vertices as bitset
classes.propersubset.resize(numV); //bitset for vertices that are a proper subset
classes.propersuperset.resize(numV); //bitset for vertices that are a proper superset
classes.subset.resize(numV); //bitset for verticest that are a subset
classes.variables.resize(numV); //gurobi variable information
classes.orbitComputed.resize(numV); //vertices classified by orbits
std::vector<std::vector<int> > superset(numV); //vertices that are a superset
std::vector<int> numSuperset(numV,0); //number of supersets per vertex
int numEss,numInt,numRed;
numEss=numInt=numRed=0;
createModel(model,bitsets,classes,g); //create Gurobi ILP model
std::chrono::time_point<std::chrono::system_clock> start, end; //timing variables for various portions of code
start=std::chrono::system_clock::now();
//classes.orbits=createOrbits(bitsets,g.numEdges()); //generate orbits using nauty
classes.orbits=createOrbits_saucy(g,bitsets); //generate orbits using saucy
end=std::chrono::system_clock::now();
std::chrono::duration<float> elapsed_seconds = end - start;
cout<<"Orbits time: "<<elapsed_seconds.count() << "s\n";
//twoPendantRule(bitsets,g);
int byessrule2=0;
bool ess;
std::vector<std::vector<int> > subcomps;
std::vector<float> MDS_compute_times;
start=std::chrono::system_clock::now();
for (int i = 0; i < numV; ++i)
{
if (!classes.done[i] && classes.propersubset[i].size()>0 && classes.propersuperset[i].size()==0)
{
if(essentialRule2(classes,bitsets,g,i)) //determine if vertex is essential (was called 2 because second iteration of essential rule)
{
//cout<<i<<" is essential by rule 2.0\n";
classes.essential[i]=true; //set to essential
classes.variables[i].set(GRB_DoubleAttr_LB,1.0); //set vertex's varialbe to 1 so in all solutions
classes.byessentialrule++;
classes.done[i]=true;
essentialSubset(classes,i); //perform rule 1
classes.byessentialrule+=classifyOrbit(classes,i,2);
byessrule2++;
}
}
}
end=std::chrono::system_clock::now();
elapsed_seconds = end - start;
cout<<"Essential rule 2 time: "<<elapsed_seconds.count() << "s\n";
start=std::chrono::system_clock::now();
model.optimize(); //compute initial MDS
end=std::chrono::system_clock::now();
elapsed_seconds = end - start;
MDS_compute_times.push_back(elapsed_seconds.count());
classes.MDStest++;
//cout<<MDStest<<" out of "<<numV<<" done\n";
classes.MDSsize=model.get(GRB_DoubleAttr_ObjVal);
cout<<"MDSsize: "<<classes.MDSsize<<"\n";
for (int i = 0; i < numV; ++i)
{
if (classes.variables[i].get(GRB_DoubleAttr_X)==1) //get MDS vertices
{
classes.MDS[i]=true;
}
}
cout<<"intermittentSwap rule\n";
start=std::chrono::system_clock::now();
intermittentSwap(classes,bitsets,g); //perform rule 3
end=std::chrono::system_clock::now();
elapsed_seconds = end - start;
cout<<"Intermittent swap time: "<<elapsed_seconds.count() << "s\n";
//cout<<classes.intswap<<"\n";
cout<<"essential_or_intermittent\n";
essential_or_intermittent(classes,bitsets,model,MDS_compute_times); //deterime if remaining MDS vertices are essential or intermittent
cout<<"redundantRule\n";
start=std::chrono::system_clock::now();
redundantRule(classes,bitsets); //perform Rule 2
end=std::chrono::system_clock::now();
elapsed_seconds = end - start;
cout<<"Redundant rule time: "<<elapsed_seconds.count() << "s\n";
cout<<"redundant_or_intermittent\n";
redundant_or_intermittent(classes,bitsets,model,MDS_compute_times); //determine if remaining vertices are redundant or intermittent
//print out runtime metrics and number of each class
float total_MDS_time, avg_MDS_time;
total_MDS_time=0;
float max_time=MDS_compute_times[0];
float min_time=MDS_compute_times[0];
for (int i = 0; i < MDS_compute_times.size(); ++i)
{
if (MDS_compute_times[i]>max_time) max_time=MDS_compute_times[i];
if (MDS_compute_times[i]<min_time) min_time=MDS_compute_times[i];
total_MDS_time+=MDS_compute_times[i];
}
cout<<"Total MDS time: "<<total_MDS_time<<"\n";
cout<<"Average MDS time: "<<total_MDS_time/MDS_compute_times.size()<<"\n";
cout<<"Max MDS compute time: "<<max_time<<"\n";
cout<<"Min MDS compute time: "<<min_time<<"\n\n";
cout<<"Number Essential: ";//<<numEss<<"\n";
cout<<classes.essential.count()<<"\n";
cout<<"Number Redundant: ";//<<numRed<<"\n";
cout<<classes.redundant.count()<<"\n";
cout<<"Number Intermittent: ";//<<numInt<<"\n";
cout<<classes.intermittent.count()<<"\n";
cout<<"Number by true orbit: "<<classes.byTrueOrbit<<"\n";
cout<<"Number by orbit: "<<classes.byOrbit<<"\n";
cout<<"Number by essential rule: "<<classes.byessentialrule<<"\n";
cout<<"Number by subset: "<<classes.bySubset<<"\n";
cout<<"Number by intermittent swap: "<<classes.intswap<<"\n";
cout<<"Number by redundant rule: "<<classes.byredundantrule<<"\n";
cout<<"Number of MDS tests: "<<classes.MDStest<<"\n";
cout<<"\n |V|: "<<numV<<" |C| "<<classes.essential.count()+classes.redundant.count()+classes.intermittent.count()<<"\n";
return 0;
}