-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathpreprocess.py
223 lines (188 loc) · 8.35 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import gzip
import json
import math
import random
import pickle
import pprint
import argparse
import numpy as np
import pandas as pd
class DatasetLoader(object):
def load(self):
"""Minimum condition for dataset:
* All users must have at least one item record.
* All items must have at least one user record.
"""
raise NotImplementedError
class MovieLens1M(DatasetLoader):
def __init__(self, data_dir):
self.fpath = os.path.join(data_dir, 'ratings.dat')
def load(self):
# Load data
df = pd.read_csv(self.fpath,
sep='::',
engine='python',
names=['user', 'item', 'rate', 'time'])
# TODO: Remove negative rating?
# df = df[df['rate'] >= 3]
return df
class MovieLens20M(DatasetLoader):
def __init__(self, data_dir):
self.fpath = os.path.join(data_dir, 'ratings.csv')
def load(self):
df = pd.read_csv(self.fpath,
sep=',',
names=['user', 'item', 'rate', 'time'],
usecols=['user', 'item', 'time'],
skiprows=1)
return df
class AmazonBeauty(DatasetLoader):
def __init__(self, data_dir, file_name='All_Beauty.json.gz'):
self.fpath = os.path.join(data_dir, file_name)
def load(self):
raw_list = []
with gzip.open(self.fpath) as f:
for idx, line in enumerate(f):
raw_data = json.loads(line)
raw_list.append({'user': raw_data['reviewerID'],
'item': raw_data['asin'],
'rate': raw_data['overall'],
'time': raw_data['unixReviewTime']})
df = pd.DataFrame(raw_list)
print('Check if any column has null value')
print(df.isnull().any())
print('Total user number: %d' % df['user'].nunique())
print('Total item number: %d' % df['item'].nunique())
print('The number of unique item per user')
print(df.groupby('user')['item'].nunique().value_counts())
print('The number of unique user per item')
print(df.groupby('item')['user'].nunique().value_counts())
return df
class Gowalla(DatasetLoader):
"""Work In Progress"""
def __init__(self, data_dir):
self.fpath = os.path.join(data_dir, 'loc-gowalla_totalCheckins.txt')
def load(self):
df = pd.read_csv(self.fpath,
sep='\t',
names=['user', 'time', 'latitude', 'longitude', 'item'],
usecols=['user', 'item', 'time'])
df_size, df_nxt_size = 0, len(df)
while df_size != df_nxt_size:
# Update
df_size = df_nxt_size
# Remove user which doesn't contain at least five items to guarantee the existance of `test_item`
groupby_user = df.groupby('user')['item'].nunique()
valid_user = groupby_user.index[groupby_user >= 15].tolist()
df = df[df['user'].isin(valid_user)]
df = df.reset_index(drop=True)
# Remove item which doesn't contain at least five users
groupby_item = df.groupby('item')['user'].nunique()
valid_item = groupby_item.index[groupby_item >= 15].tolist()
df = df[df['item'].isin(valid_item)]
df = df.reset_index(drop=True)
# Update
df_nxt_size = len(df)
print('User distribution')
print(df.groupby('user')['item'].nunique().describe())
print('Item distribution')
print(df.groupby('item')['user'].nunique().describe())
return df
def convert_unique_idx(df, column_name):
column_dict = {x: i for i, x in enumerate(df[column_name].unique())}
df[column_name] = df[column_name].apply(column_dict.get)
df[column_name] = df[column_name].astype('int')
assert df[column_name].min() == 0
assert df[column_name].max() == len(column_dict) - 1
return df, column_dict
def create_user_list(df, user_size):
user_list = [list() for u in range(user_size)]
for row in df.itertuples():
user_list[row.user].append((row.time, row.item))
return user_list
def split_train_test(df, user_size, test_size=0.2, time_order=False):
"""Split a dataset into `train_user_list` and `test_user_list`.
Because it needs `user_list` for splitting dataset as `time_order` is set,
Returning `user_list` data structure will be a good choice."""
# TODO: Handle duplicated items
if not time_order:
test_idx = np.random.choice(len(df), size=int(len(df)*test_size))
train_idx = list(set(range(len(df))) - set(test_idx))
test_df = df.loc[test_idx].reset_index(drop=True)
train_df = df.loc[train_idx].reset_index(drop=True)
test_user_list = create_user_list(test_df, user_size)
train_user_list = create_user_list(train_df, user_size)
else:
total_user_list = create_user_list(df, user_size)
train_user_list = [None] * len(user_list)
test_user_list = [None] * len(user_list)
for user, item_list in enumerate(total_user_list):
# Choose latest item
item_list = sorted(item_list, key=lambda x: x[0])
# Split item
test_item = item_list[math.ceil(len(item_list)*(1-test_size)):]
train_item = item_list[:math.ceil(len(item_list)*(1-test_size))]
# Register to each user list
test_user_list[user] = test_item
train_user_list[user] = train_item
# Remove time
test_user_list = [list(map(lambda x: x[1], l)) for l in test_user_list]
train_user_list = [list(map(lambda x: x[1], l)) for l in train_user_list]
return train_user_list, test_user_list
def create_pair(user_list):
pair = []
for user, item_list in enumerate(user_list):
pair.extend([(user, item) for item in item_list])
return pair
def main(args):
if args.dataset == 'ml-1m':
df = MovieLens1M(args.data_dir).load()
elif args.dataset == 'ml-20m':
df = MovieLens20M(args.data_dir).load()
elif args.dataset == 'amazon-beauty':
df = AmazonBeauty(args.data_dir).load()
else:
raise NotImplementedError
df, user_mapping = convert_unique_idx(df, 'user')
df, item_mapping = convert_unique_idx(df, 'item')
print('Complete assigning unique index to user and item')
user_size = len(df['user'].unique())
item_size = len(df['item'].unique())
train_user_list, test_user_list = split_train_test(df,
user_size,
test_size=args.test_size,
time_order=args.time_order)
print('Complete spliting items for training and testing')
train_pair = create_pair(train_user_list)
print('Complete creating pair')
dataset = {'user_size': user_size, 'item_size': item_size,
'user_mapping': user_mapping, 'item_mapping': item_mapping,
'train_user_list': train_user_list, 'test_user_list': test_user_list,
'train_pair': train_pair}
dirname = os.path.dirname(os.path.abspath(args.output_data))
os.makedirs(dirname, exist_ok=True)
with open(args.output_data, 'wb') as f:
pickle.dump(dataset, f, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
# Parse argument
parser = argparse.ArgumentParser()
parser.add_argument('--dataset',
choices=['ml-1m', 'ml-20m', 'amazon-beauty', 'gowalla'])
parser.add_argument('--data_dir',
type=str,
default=os.path.join('data', 'ml-1m'),
help="File path for raw data")
parser.add_argument('--output_data',
type=str,
default=os.path.join('preprocessed', 'ml-1m.pickle'),
help="File path for preprocessed data")
parser.add_argument('--test_size',
type=float,
default=0.2,
help="Proportion for training and testing split")
parser.add_argument('--time_order',
action='store_true',
help="Proportion for training and testing split")
args = parser.parse_args()
main(args)