-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctreec_test.py
127 lines (112 loc) · 4.91 KB
/
ctreec_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import unittest
import ctreec
import tree_decoder
import torch
class TestCTreeC(unittest.TestCase):
def setUp(self):
self.omd = tree_decoder.CTreeDecoder(
ntoken=11, slot_size=20,
producer_class='Cell',
max_depth=3,
leaf_dropout=0,
output_dropout=0,
integrate_dropout=0,
attn_dropout=0,
node_attention=False,
output_attention=False
)
self.loss = ctreec.Loss(depth=3)
self.length = 4
def test_variable_length_batch(self):
batch_size = 5
labels, root, context, lengths = self._generate_data(batch_size,
self.length)
log_probs = self.omd(root, context, labels)
batched_ctreec_log_probs = self.loss(log_probs, labels, lengths)
for i in range(batch_size):
with self.subTest(batch_idx=i):
idv_ctreec_log_probs = self.loss(
log_probs[:, i:i+1], labels[:, i:i+1], lengths[i:i+1])
self.assertAlmostEqual(
batched_ctreec_log_probs[i].item(),
idv_ctreec_log_probs[0].item(),
places=5,
msg="Not computing right loss for i = %d" % i
)
def test_singleton(self):
labels, root, context, lengths = self._generate_data(1, 1)
log_probs = self.omd(root, context, labels)
ctreec_log_probs = self.loss(
log_probs, labels,
torch.full_like(labels[0, :], labels.size(0))
)
ctreec_neg_log_probs = ctreec_log_probs[0].item()
ext_log_probs = ctreec.extract_label_log_probs(log_probs, labels)
manual_neg_log_probs = -ext_log_probs[7, 0, 0].item()
self.assertAlmostEqual(
manual_neg_log_probs, ctreec_neg_log_probs,
places=5,
msg="Marginalisation incorrect for length = 1"
)
def _generate_data(self, batch_size, max_length):
root = torch.randn(batch_size, 20)
context = torch.randn(20, batch_size, 20)
labels = torch.randint(10, size=(max_length, batch_size))
lengths = torch.randint(0, max_length, size=(batch_size,)) + 1
lengths, _ = lengths.sort(descending=True)
mask = torch.ones_like(context[:, :, 0]).bool()
return labels, root, (context, context, mask, context, context, mask), lengths
def test_marginalisation(self):
labels, root, context, lengths = self._generate_data(1, self.length)
log_probs = self.omd(root, context, labels)
ctreec_log_probs = self.loss(
log_probs, labels,
torch.full_like(labels[0, :], labels.size(0))
)
ctreec_neg_log_probs = ctreec_log_probs[0].item()
ext_log_probs = ctreec.extract_label_log_probs(log_probs, labels)
paths = torch.stack((
ext_log_probs[[0, 2, 5, 11], 0, [0, 1, 2, 3]],
ext_log_probs[[1, 4, 6, 11], 0, [0, 1, 2, 3]],
ext_log_probs[[1, 5, 9, 13], 0, [0, 1, 2, 3]],
ext_log_probs[[3, 8, 10, 13], 0, [0, 1, 2, 3]],
ext_log_probs[[3, 9, 12, 14], 0, [0, 1, 2, 3]]
))
manual_neg_log_probs = -paths.sum(1).logsumexp(0).item()
self.assertAlmostEqual(
manual_neg_log_probs, ctreec_neg_log_probs,
places=5,
msg="Marginalisation incorrect for length = 4"
)
def test_log_space(self):
labels, root, context, _ = self._generate_data(1, self.length)
log_probs = self.omd(root, context, labels)
ctreec_log_probs = self.loss(
log_probs, labels,
torch.full_like(labels[0, :], labels.size(0))
)
ctreec_neg_log_probs = ctreec_log_probs[0].item()
ext_log_probs = ctreec.extract_label_log_probs(log_probs, labels)
ext_probs = torch.exp(ext_log_probs).permute(2, 1, 0)
prev_probs = torch.zeros_like(ext_probs[0])
prev_probs[:, self.loss.start_idxs] = \
ext_probs[0, :, self.loss.start_idxs]
for t in range(1, self.length):
curr_probs = torch.matmul(prev_probs, self.loss.transition)
prev_probs = curr_probs * ext_probs[t]
exp_space_neg_log_probs = -torch.log(
prev_probs[:, self.loss.end_idxs].sum()).item()
self.assertAlmostEqual(
exp_space_neg_log_probs, ctreec_neg_log_probs,
places=5,
msg="Log-space modifications incorrect.")
def test_nan(self):
batch_size = 5
labels, root, context, lengths = self._generate_data(batch_size, self.length)
log_probs = self.omd(root, context, labels)
batched_ctreec_log_probs = self.loss(log_probs, labels, lengths)
torch.autograd.set_detect_anomaly(True)
batched_ctreec_log_probs.mean().backward()
torch.autograd.set_detect_anomaly(False)
if __name__ == "__main__":
unittest.main()