forked from awslabs/amazon-redshift-utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport_gen.py
157 lines (136 loc) · 4.87 KB
/
report_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import pandas as pd
import yaml
from functools import partial
from reportlab.lib.pagesizes import letter
from reportlab.lib.units import inch
from reportlab.platypus import (
PageBreak,
TableStyle,
Table,
Spacer,
Image,
SimpleDocTemplate,
Paragraph,
ListFlowable,
ListItem,
)
from report_util import (
styles,
build_pdf_tables,
df_to_np,
first_page,
later_pages,
hist_gen,
sub_yaml_vars,
)
g_stylesheet = styles()
def pdf_gen(report, summary=None):
"""This function formats the summary report using the content from report_content.yaml to populate the paragraphs,
titles, and headers. The tables are populated via the Report param which has all the dataframes.
@param report: Report object
@param summary: list, replay summary
"""
with open("report_content.yaml", "r") as stream:
docs = yaml.safe_load(stream)
style = g_stylesheet.get("styles")
elems = [] # elements array used to build pdf structure
pdf = SimpleDocTemplate(
f"{report.replay_id}_report.pdf",
pagesize=letter,
leftMargin=0.75 * inch,
rightMargin=0.75 * inch,
topMargin=0.75 * inch,
bottomMargin=0.75 * inch,
)
# title and subtitle and cluster info table
elems.append(Paragraph(docs["title"], style["Title"]))
elems.append(
Paragraph(sub_yaml_vars(report, docs["subtitle"]), style["Heading4"])
)
cluster_info = pd.DataFrame.from_dict(report.cluster_details, orient="index")
elems.append(
Table(
df_to_np(report.cluster_details.keys(), cluster_info.transpose()),
hAlign="LEFT",
style=g_stylesheet.get("table_style"),
)
)
# replay summary
if summary is not None:
elems.append(Paragraph(f"Replay Summary", style["Heading4"]))
elems.append(
ListFlowable(
[ListItem(Paragraph(x, style["Normal"])) for x in summary],
bulletType="bullet",
)
)
elems.append(Spacer(0, 5))
elems.append(Paragraph(docs["report_paragraph"], style["Normal"]))
# glossary section
elems.append(Paragraph(docs["glossary_header"], style["Heading4"]))
elems.append(Paragraph(docs["glossary_paragraph"], style["Normal"]))
elems.append(
ListFlowable(
[ListItem(Paragraph(x, style["Normal"])) for x in docs["glossary"]],
bulletType="bullet",
)
)
elems.append(Spacer(0, 5))
# access data section
elems.append(Paragraph(docs["data_header"], style["Heading4"]))
elems.append(
Paragraph(sub_yaml_vars(report, docs["data_paragraph"]), style["Normal"])
)
elems.append(
ListFlowable(
[ListItem(Paragraph(x, style["Normal"])) for x in docs["raw_data"]],
bulletType="bullet",
)
)
elems.append(Spacer(0, 5))
elems.append(
Paragraph(
sub_yaml_vars(report, docs["agg_data_paragraph"]), style["Normal"]
)
)
# notes section
elems.append(Paragraph(docs["notes_header"], style["Heading4"]))
elems.append(Paragraph(docs["notes_paragraph"], style["Normal"]))
elems.append(
ListFlowable(
[ListItem(Paragraph(x, style["Normal"])) for x in docs["notes"]],
bulletType="bullet",
)
)
elems.append(PageBreak()) # page 2: cluster details
# query breakdown
build_pdf_tables(elems, docs["query_breakdown"], report)
elems.append(Spacer(0, 5))
# histogram and description
image_path = hist_gen(
x_data=report.feature_graph["sec_start"],
y_data=report.feature_graph["count"],
title=docs["graph"].get("title"),
x_label="Average Elapsed Time (s)",
)
desc = Paragraph(docs["graph"].get("paragraph"), style["Normal"])
data = [[Image(image_path, width=300, height=200, hAlign="LEFT"), desc]]
elems.append(
Table(data, style=TableStyle([("VALIGN", (0, 0), (-1, -1), "MIDDLE")]))
)
elems.append(Spacer(0, 5))
# cluster metrics table
build_pdf_tables(elems, docs["cluster_metrics"], report)
elems.append(PageBreak()) # page 3+ measure tables
build_pdf_tables(
elems, docs["measure_tables"], report
) # build 5 measure tables all at once
# build pdf
pdf.build(
elems,
onFirstPage=partial(first_page, report=report),
onLaterPages=partial(later_pages, report=report),
)
os.remove(image_path)
return pdf.filename