-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_and_translate.sh
167 lines (139 loc) · 5.09 KB
/
train_and_translate.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
source activate mmd
read -p "Is train: (1 - Yes, 0 - no): " IS_TRAIN
## We had srun queuing system to run models on server with
## 2 types of queues and multiple gpus
## Ignore this
#read -p "Enter queue: i:intel / a:amd " Q
#case $Q in
# a )
# read -p "Enter gpu (write as 07/08): " GPU
# NODE=gpu$GPU
# QUEUE=amd-longq
# ;;
# i )
# NODE=dgx01
# QUEUE=intel-longq
# ;;
#esac
read -p "Please enter data version (as v2). Default v2: " DATA_VERSION
read -p "Please enter context size. Default 2: " CONTEXT_SIZE
# For now we train and evaluate on the whole dataset. #Future work
read -p "Please enter state data directory. Blank for all: " DATA_STATE_DIR
read -p "Please enter state model saved directory. Blank for all: " MODEL_STATE_DIR
# Model variant
read -p "Enter model: m:multimodelHRED / h:hred" MODEL_INPUT
case $MODEL_INPUT in
m )
MODEL_TYPE=MultimodalHRED
;;
h )
MODEL_TYPE=HRED # Text based HRED
;;
esac
read -p "Please enter config version (as _v4). Default _v4: " CONFIG_VERSION
read -p "Please enter checkpoint epoch (like 20/30). Default 10: " CHECKPOINT_EPOCH
read -p "Please enter max len for data directory: (as _20). Default 20: " MAX_LEN
read -p "Use KB: t:true / f:false (Default: False)" KB_INPUT
case $KB_INPUT in
t )
USE_KB=True
;;
f )
USE_KB=False
;;
esac
export USE_KB=${USE_KB:-False}
MAX_LEN=${MAX_LEN:-_20}
CONFIG_VERSION=${CONFIG_VERSION:-_v4}
CHECKPOINT_EPOCH=${CHECKPOINT_EPOCH:-10}
CONTEXT_SIZE=${CONTEXT_SIZE:-2}
DATA_VERSION=${DATA_VERSION:-v2}
NUM_STATES=${NUM_STATES:-10}
export NUM_STATES=$NUM_STATES
export MODEL_TYPE=$MODEL_TYPE
export DATA_STATE_DIR=$DATA_STATE_DIR
export MODEL_STATE_DIR=$MODEL_STATE_DIR
export CHECKPOINT_EPOCH=$CHECKPOINT_EPOCH
export MAX_LEN=$MAX_LEN
export CONFIG_VERSION=$CONFIG_VERSION
export CONTEXT_SIZE=$CONTEXT_SIZE
export DATA_VERSION=$DATA_VERSION
export PROJECT_DIR=${PWD}
export DATA_DIR=$PROJECT_DIR/data/dataset/${DATA_VERSION}/dialogue_data/
export CONTEXT_DATA_DIR=$DATA_DIR/context_${CONTEXT_SIZE}${MAX_LEN}/
# Actual data dir. could be only related to a particular intent state
export DIR_PKL=$CONTEXT_DATA_DIR/$DATA_STATE_DIR
# Common
export HRED_CODE_DIR=$PROJECT_DIR/
export HRED_MODEL_DIR=$PROJECT_DIR/models/
export MODEL_DIR=$HRED_MODEL_DIR/context_${CONTEXT_SIZE}${MAX_LEN}/$MODEL_TYPE/$MODEL_STATE_DIR/$CONFIG_VERSION/
echo "Making model dir"
echo $MODEL_DIR
mkdir -p $MODEL_DIR
# Config related variables
export CONFIG_FILE_PATH=$HRED_CODE_DIR/config/config_hred_mmd${CONFIG_VERSION}.json
export TRAIN_PKL=$DIR_PKL/train.pkl
export VALID_PKL=$DIR_PKL/valid.pkl
export TEST_PKL=$DIR_PKL/test.pkl
export VOCAB_PATH=$CONTEXT_DATA_DIR/vocab.pkl
# KB related path
export TRAIN_KB_PKL=$DIR_PKL/train_kb_text_both.pkl
export VALID_KB_PKL=$DIR_PKL/valid_kb_text_both.pkl
export TEST_KB_PKL=$DIR_PKL/test_kb_text_both.pkl
export TRAIN_CELEB_PKL=$DIR_PKL/train_celeb_text_both.pkl
export VALID_CELEB_PKL=$DIR_PKL/valid_celeb_text_both.pkl
export TEST_CELEB_PKL=$DIR_PKL/test_celeb_text_both.pkl
export CELEB_VOCAB_PATH=$CONTEXT_DATA_DIR/celeb_vocab.pkl
export KB_VOCAB_PATH=$CONTEXT_DATA_DIR/kb_vocab.pkl
# States related path
export TRAIN_STATES_PKL=$CONTEXT_DATA_DIR/train_states.pkl
export VALID_STATES_PKL=$CONTEXT_DATA_DIR/valid_states.pkl
export TEST_STATES_PKL=$CONTEXT_DATA_DIR/test_states.pkl
echo $MODEL_TYPE
echo "Model saved in: "
echo $MODEL_DIR
echo "Following config: "
echo $CONFIG_FILE_PATH
export ANNOY_PATH=${PWD}/data/raw_catlog/image_annoy_index
export ANNOY_FILE=$ANNOY_PATH/annoy.ann
export ANNOY_PKL=$ANNOY_PATH/ImageUrlToIndex.pkl
# export ANNOY_PKL=$ANNOY_PATH/FileNameMapToIndex.pkl
export CHECKPOINT_PATH=$MODEL_DIR/model_params_${CHECKPOINT_EPOCH}.pkl
export RESULTS_DIR=$MODEL_DIR/$DATA_STATE_DIR
export OUT_FILE_PATH=$RESULTS_DIR/pred_${CHECKPOINT_EPOCH}.txt
export OUT_CLASS_FILE=$RESULTS_DIR/class_${CHECKPOINT_EPOCH}.txt
export TEST_TARGET=$DIR_PKL/test_target_text.txt
export TEST_CONTEXT=$DIR_PKL/test_context_text.txt
export LOG_BLEU_FILE=$RESULTS_DIR/bleu_${CHECKPOINT_EPOCH}.txt
export TEST_TARGET_TOKENIZED=$RESULTS_DIR/test_tokenized.txt
export LOG_BLEU_TOKENIZED=$RESULTS_DIR/bleu_tokenized_${CHECKPOINT_EPOCH}.txt
cp $TEST_CONTEXT $RESULTS_DIR
cp $CONFIG_FILE_PATH $RESULTS_DIR
export RESULTS_FILE=$RESULTS_DIR/results_${CHECKPOINT_EPOCH}.txt
echo "Saving results to"
echo $RESULTS_DIR
mkdir -p $RESULTS_DIR
if [ $IS_TRAIN == 1 ]; then
echo "Training"
CURRENT_TIME=$(date +"%T")
echo "Current time : $CURRENT_TIME"
#srun --partition $QUEUE --nodelist=$NODE --gres=gpu -c4 \
bash train.sh > $MODEL_DIR/logs.txt
fi
echo "Training done"
# Printing time
CURRENT_TIME=$(date +"%T")
echo "Current time : $CURRENT_TIME"
#srun --partition $QUEUE --nodelist=$NODE --gres=gpu -c4 \
bash translate.sh > $MODEL_DIR/logs_translate.txt
echo "Translation done"
# Printing time
CURRENT_TIME=$(date +"%T")
echo "Current time : $CURRENT_TIME"
python utils/convert_test_for_bleu.py \
-input_file $TEST_TARGET \
-tokenized_file $TEST_TARGET_TOKENIZED
echo "Test tokenized"
#srun --partition $QUEUE --nodelist=$NODE --gres=gpu -c4 \
bash evaluation/nlg_eval.sh > $RESULTS_DIR/metrics_tokenized_${CHECKPOINT_EPOCH}.txt
echo "Bleu done"