-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvy-free.py
404 lines (334 loc) · 14.1 KB
/
envy-free.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import math
from scipy.optimize import linear_sum_assignment
import numpy as np
from docplex.mp.model import Model
import sys
import matplotlib.pyplot as plt
# epsilon = sys.float_info.epsilon
epsilon = 0.00001
class RentDivisionInstance:
def __init__(self, valuations: list[list[float]], price: float):
# a 2D list where valuations[i][j] represents the valuation for room j wrt agent i
self.valuations = valuations
self.num_agents = len(valuations)
self.num_rooms = self.num_agents
self.price = price
for val in valuations:
assert self.num_agents == len(val)
assert math.isclose(sum(val), price)
class RentDivisionAllocation:
def __init__(self, assignment: list[int], prices: list[float], valuations=None):
self.num_agents = len(assignment)
self.num_rooms = len(assignment)
# assignment[i] -> room that agent i receives
self.assignment = assignment
# price[i] -> price of room i
self.prices = prices
self.valuations = valuations
def __str__(self):
# convert room assignment to upper case letters
# assignment = [chr(ord('A') + i) for i in self.assignment]
out = ""
for i in range(len(self.assignment)):
out += "Agent " + str(i+1) + " -> Room " + chr(ord('A') + self.assignment[i]) + " at price " + str(self.prices[self.assignment[i]]) + "\n"
# out = str(self.assignment) + "\n" + str(self.prices)
return out
def get_utilities(self):
assert self.valuations is not None
utilities = [
[(val[i] - self.prices[i]) for i in range(len(val))]
for val in self.valuations
]
return utilities
def get_realised_utilities(self):
assert self.valuations is not None
utilities = self.get_utilities()
realised_utilities = [
utilities[i][self.assignment[i]] for i in range(self.num_agents)
]
return realised_utilities
def WelfareMaximizingAssignment(instance: RentDivisionInstance) -> list[int]:
cost = [[-x for x in val] for val in instance.valuations]
cost = np.array(cost)
_, col_ind = linear_sum_assignment(cost)
assignment = list(col_ind)
return assignment
class RentDivisionAlgorithm:
@staticmethod
def solve(instance: RentDivisionInstance) -> RentDivisionAllocation:
assignment = [i for i in range(instance.num_agents)]
prices = [
instance.price / instance.num_rooms for i in range(instance.num_rooms)
]
allocation = RentDivisionAllocation(assignment=assignment, prices=prices)
return allocation
class EnvyFree(RentDivisionAlgorithm):
@staticmethod
def solve(instance: RentDivisionInstance) -> RentDivisionAllocation:
model = Model(name="envy-free-rent-division")
p = model.continuous_var_list(keys=instance.num_agents, lb=0.0, name="p")
# a welfare maximizing assignment
assignment = WelfareMaximizingAssignment(instance)
# envy-freeness constraints
for i in range(instance.num_agents):
for j in range(instance.num_agents):
model.add_constraint(
instance.valuations[i][assignment[i]] - p[assignment[i]]
>= instance.valuations[i][j] - p[j]
)
# sum of prices are fixed
model.add_constraint(
sum(p[i] for i in range(instance.num_agents)) == instance.price
)
solution = model.solve()
prices = [solution[p[i]] for i in range(instance.num_rooms)]
allocation = RentDivisionAllocation(
assignment=assignment, prices=prices, valuations=instance.valuations
)
return allocation
class Maximin(RentDivisionAlgorithm):
@staticmethod
def solve(instance: RentDivisionInstance) -> RentDivisionAllocation:
model = Model(name="Maximin-rent-division")
p = model.continuous_var_list(keys=instance.num_agents, lb=0.0, name="p")
# R represents the minimum utility
R = model.continuous_var(name="R")
# a welfare maximizing assignment
assignment = WelfareMaximizingAssignment(instance)
# envy-freeness constraints
for i in range(instance.num_agents):
for j in range(instance.num_agents):
model.add_constraint(
instance.valuations[i][assignment[i]] - p[assignment[i]]
>= instance.valuations[i][j] - p[j]
)
# maximin constraint
for i in range(instance.num_agents):
model.add_constraint(
R <= instance.valuations[i][assignment[i]] - p[assignment[i]]
)
# sum of prices are fixed
model.add_constraint(
sum(p[i] for i in range(instance.num_agents)) == instance.price
)
# maximize R (i.e maximize the minimum utility)
model.set_objective("max", R)
solution = model.solve()
if solution is None:
print([sum(val) for val in instance.valuations])
assert solution is not None
prices = [solution[p[i]] for i in range(instance.num_rooms)]
allocation = RentDivisionAllocation(
assignment=assignment, prices=prices, valuations=instance.valuations
)
return allocation
class Maxislack(RentDivisionAlgorithm):
@staticmethod
def solve(instance: RentDivisionInstance) -> RentDivisionAllocation:
model = Model(name="Maxislack-rent-division")
p = model.continuous_var_list(keys=instance.num_agents, lb=0.0, name="p")
# S represents the minimum slack
S = model.continuous_var(name="S")
# a welfare maximizing assignment
assignment = WelfareMaximizingAssignment(instance)
# maxislack constraint
for i in range(instance.num_agents):
for j in range(instance.num_agents):
if j != assignment[i]:
model.add_constraint(
S
<= (instance.valuations[i][assignment[i]] - p[assignment[i]])
- (instance.valuations[i][j] - p[j])
)
# sum of prices are fixed
model.add_constraint(
sum(p[i] for i in range(instance.num_agents)) == instance.price
)
# maximize S (i.e maximize the minimum slack)
model.set_objective("max", S)
solution = model.solve()
prices = [solution[p[i]] for i in range(instance.num_rooms)]
allocation = RentDivisionAllocation(
assignment=assignment, prices=prices, valuations=instance.valuations
)
return allocation
class Lexislack(RentDivisionAlgorithm):
@staticmethod
def get_L(fixed_deltas, non_fixed_deltas, instance, assignment):
model = Model()
p = model.continuous_var_list(keys=instance.num_agents, lb=0.0, name="p")
# S represents the minimum slack over non_fixed_deltas
S = model.continuous_var(name="S")
# constraints for maximizing minimum of non_fixed_deltas
for i, j in non_fixed_deltas:
model.add_constraint(
S
<= (instance.valuations[i][assignment[i]] - p[assignment[i]])
- (instance.valuations[i][j] - p[j])
)
# constraints for fixed_deltas
for i, j in fixed_deltas.keys():
model.add_constraint(
(instance.valuations[i][assignment[i]] - p[assignment[i]])
- (instance.valuations[i][j] - p[j])
== fixed_deltas[(i, j)]
)
# sum of prices are fixed
model.add_constraint(
sum(p[i] for i in range(instance.num_agents)) == instance.price
)
# maximize S (i.e maximize the minimum slack over non_fixed_deltas)
model.set_objective("max", S)
solution = model.solve()
assert solution is not None
L = solution[S]
return L
@staticmethod
def get_solution(fixed_deltas, instance, assignment):
model = Model()
p = model.continuous_var_list(keys=instance.num_agents, lb=0.0, name="p")
# constraints for fixed_deltas
for i, j in fixed_deltas.keys():
model.add_constraint(
(instance.valuations[i][assignment[i]] - p[assignment[i]])
- (instance.valuations[i][j] - p[j])
== fixed_deltas[(i, j)]
)
# sum of prices are fixed
model.add_constraint(
sum(p[i] for i in range(instance.num_agents)) == instance.price
)
solution = model.solve()
prices = [solution[p[i]] for i in range(instance.num_rooms)]
return prices
@staticmethod
def check_valid(L, i1, j1, fixed_deltas, non_fixed_deltas, instance, assignment):
"""Check if delta_i1_j1 can be larger than L for a lexislack allocation"""
model = Model()
p = model.continuous_var_list(keys=instance.num_agents, lb=0.0, name="p")
# constraints for fixed_deltas
for i, j in fixed_deltas.keys():
model.add_constraint(
(instance.valuations[i][assignment[i]] - p[assignment[i]])
- (instance.valuations[i][j] - p[j])
== fixed_deltas[(i, j)]
)
# constraints for non_fixed_deltas
for i, j in non_fixed_deltas:
if (i, j) != (i1, j1):
model.add_constraint(
(instance.valuations[i][assignment[i]] - p[assignment[i]])
- (instance.valuations[i][j] - p[j])
>= L
)
else:
model.add_constraint(
(instance.valuations[i1][assignment[i1]] - p[assignment[i1]])
- (instance.valuations[i1][j1] - p[j1])
>= L + epsilon
)
# sum of prices are fixed
model.add_constraint(
sum(p[i] for i in range(instance.num_agents)) == instance.price
)
return model.solve() is not None
@staticmethod
def solve(instance: RentDivisionInstance) -> RentDivisionAllocation:
# a welfare maximizing assignment
assignment = WelfareMaximizingAssignment(instance)
fixed_deltas = {}
non_fixed_deltas = set()
for i in range(instance.num_agents):
for j in range(instance.num_agents):
if j != assignment[i]:
non_fixed_deltas.add((i, j))
while len(non_fixed_deltas) > 0:
L = Lexislack.get_L(fixed_deltas, non_fixed_deltas, instance, assignment)
flag = False
for i1, j1 in non_fixed_deltas:
# Check if delta_i1_j1 can be larger than L for a lexislack allocation
if not Lexislack.check_valid(
L, i1, j1, fixed_deltas, non_fixed_deltas, instance, assignment
):
flag = True
fixed_deltas[(i1, j1)] = L
non_fixed_deltas.remove((i1, j1))
break
assert flag
prices = Lexislack.get_solution(fixed_deltas, instance, assignment)
allocation = RentDivisionAllocation(
assignment=assignment, prices=prices, valuations=instance.valuations
)
return allocation
class Minimax(RentDivisionAlgorithm):
@staticmethod
def solve(instance: RentDivisionInstance) -> RentDivisionAllocation:
model = Model(name="Minimax-rent-division")
p = model.continuous_var_list(keys=instance.num_agents, lb=0.0, name="p")
# R represents the maximum utility
R = model.continuous_var(name="R")
# a welfare maximizing assignment
assignment = WelfareMaximizingAssignment(instance)
# envy-freeness constraints
for i in range(instance.num_agents):
for j in range(instance.num_agents):
model.add_constraint(
instance.valuations[i][assignment[i]] - p[assignment[i]]
>= instance.valuations[i][j] - p[j]
)
# minimax constraint
for i in range(instance.num_agents):
model.add_constraint(
R >= instance.valuations[i][assignment[i]] - p[assignment[i]]
)
# sum of prices are fixed
model.add_constraint(
sum(p[i] for i in range(instance.num_agents)) == instance.price
)
# minimize R (i.e minimize the maximum utility)
model.set_objective("min", R)
solution = model.solve()
prices = [solution[p[i]] for i in range(instance.num_rooms)]
allocation = RentDivisionAllocation(
assignment=assignment, prices=prices, valuations=instance.valuations
)
return allocation
def generate_random_valuations(n, price):
valuations = [[round(np.random.random(), 2) for i in range(n)] for j in range(n)]
for val in valuations:
sum_val = sum(val)
for i in range(n):
val[i] = val[i]*price/sum_val
# print(sum(val))
return valuations
def main():
valuations = [[4.0, 1.0, 3.0], [2.0, 0.0, 6.0], [3.0, 3.0, 2.0]]
price = 8.0
instance = RentDivisionInstance(valuations=valuations, price=price)
# Envy-free allocation
allocation = EnvyFree.solve(instance=instance)
print("Envy-free allocation :")
# print("Allocation 1:")
print(allocation)
# print(allocation.get_utilities())
allocation = Maximin.solve(instance=instance)
print("Maximin allocation :")
# print("Allocation 1:")
print(allocation)
# print(allocation.get_utilities())
allocation = Maxislack.solve(instance=instance)
print("Maxislack allocation :")
# print("Allocation 3:")
print(allocation)
# print(allocation.get_utilities())
allocation = Lexislack.solve(instance=instance)
print("Lexislack allocation :")
# print("Allocation 2:")
print(allocation)
# print(allocation.get_utilities())
allocation = Minimax.solve(instance=instance)
print("Minimax allocation :")
# print("Allocation 3:")
print(allocation)
# print(allocation.get_utilities())
main()