-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdag.go
353 lines (303 loc) · 9.04 KB
/
dag.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
package dag
import (
"fmt"
"sort"
"strings"
)
// AcyclicGraph is a specialization of Graph that cannot have cycles.
type AcyclicGraph struct {
Graph
}
// WalkFunc is the callback used for walking the graph.
type WalkFunc func(Vertex) Diagnostics
// DepthWalkFunc is a walk function that also receives the current depth of the
// walk as an argument
type DepthWalkFunc func(Vertex, int) error
func (g *AcyclicGraph) DirectedGraph() Grapher {
return g
}
// Returns a Set that includes every Vertex yielded by walking down from the
// provided starting Vertex v.
func (g *AcyclicGraph) Ancestors(v Vertex) (Set, error) {
s := make(Set)
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.DepthFirstWalk(g.downEdgesNoCopy(v), memoFunc); err != nil {
return nil, err
}
return s, nil
}
// Returns a Set that includes every Vertex yielded by walking up from the
// provided starting Vertex v.
func (g *AcyclicGraph) Descendents(v Vertex) (Set, error) {
s := make(Set)
memoFunc := func(v Vertex, d int) error {
s.Add(v)
return nil
}
if err := g.ReverseDepthFirstWalk(g.upEdgesNoCopy(v), memoFunc); err != nil {
return nil, err
}
return s, nil
}
// Root returns the root of the DAG, or an error.
//
// Complexity: O(V)
func (g *AcyclicGraph) Root() (Vertex, error) {
roots := make([]Vertex, 0, 1)
for _, v := range g.Vertices() {
if g.upEdgesNoCopy(v).Len() == 0 {
roots = append(roots, v)
}
}
if len(roots) > 1 {
// TODO(mitchellh): make this error message a lot better
return nil, fmt.Errorf("multiple roots: %#v", roots)
}
if len(roots) == 0 {
return nil, fmt.Errorf("no roots found")
}
return roots[0], nil
}
// TransitiveReduction performs the transitive reduction of graph g in place.
// The transitive reduction of a graph is a graph with as few edges as
// possible with the same reachability as the original graph. This means
// that if there are three nodes A => B => C, and A connects to both
// B and C, and B connects to C, then the transitive reduction is the
// same graph with only a single edge between A and B, and a single edge
// between B and C.
//
// The graph must be free of cycles for this operation to behave properly.
//
// Complexity: O(V(V+E)), or asymptotically O(VE)
func (g *AcyclicGraph) TransitiveReduction() {
// For each vertex u in graph g, do a DFS starting from each vertex
// v such that the edge (u,v) exists (v is a direct descendant of u).
//
// For each v-prime reachable from v, remove the edge (u, v-prime).
for _, u := range g.Vertices() {
uTargets := g.downEdgesNoCopy(u)
g.DepthFirstWalk(g.downEdgesNoCopy(u), func(v Vertex, d int) error {
shared := uTargets.Intersection(g.downEdgesNoCopy(v))
for _, vPrime := range shared {
g.RemoveEdge(BasicEdge(u, vPrime))
}
return nil
})
}
}
// Validate validates the DAG. A DAG is valid if it has a single root
// with no cycles.
func (g *AcyclicGraph) Validate() error {
if _, err := g.Root(); err != nil {
return err
}
// Look for cycles of more than 1 component
var diags Diagnostics
cycles := g.Cycles()
if len(cycles) > 0 {
for _, cycle := range cycles {
cycleStr := make([]string, len(cycle))
for j, vertex := range cycle {
cycleStr[j] = VertexName(vertex)
}
diags = diags.Append(fmt.Errorf(
"Cycle: %s", strings.Join(cycleStr, ", ")))
}
}
// Look for cycles to self
for _, e := range g.Edges() {
if e.Source() == e.Target() {
diags = diags.Append(fmt.Errorf(
"Self reference: %s", VertexName(e.Source())))
}
}
return diags.Err()
}
// Cycles reports any cycles between graph nodes.
// Self-referencing nodes are not reported, and must be detected separately.
func (g *AcyclicGraph) Cycles() [][]Vertex {
var cycles [][]Vertex
for _, cycle := range StronglyConnected(&g.Graph) {
if len(cycle) > 1 {
cycles = append(cycles, cycle)
}
}
return cycles
}
// Walk walks the graph, calling your callback as each node is visited.
// This will walk nodes in parallel if it can. The resulting diagnostics
// contains problems from all graphs visited, in no particular order.
func (g *AcyclicGraph) Walk(cb WalkFunc) Diagnostics {
w := &Walker{Callback: cb, Reverse: true}
w.Update(g)
return w.Wait()
}
// simple convenience helper for converting a dag.Set to a []Vertex
func AsVertexList(s Set) []Vertex {
vertexList := make([]Vertex, 0, len(s))
for _, raw := range s {
vertexList = append(vertexList, raw.(Vertex))
}
return vertexList
}
type vertexAtDepth struct {
Vertex Vertex
Depth int
}
// DepthFirstWalk does a depth-first walk of the graph starting from
// the vertices in start.
// The algorithm used here does not do a complete topological sort. To ensure
// correct overall ordering run TransitiveReduction first.
func (g *AcyclicGraph) DepthFirstWalk(start Set, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, 0, len(start))
for _, v := range start {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: 0,
})
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
for _, v := range g.downEdgesNoCopy(current.Vertex) {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: current.Depth + 1,
})
}
}
return nil
}
// SortedDepthFirstWalk does a depth-first walk of the graph starting from
// the vertices in start, always iterating the nodes in a consistent order.
func (g *AcyclicGraph) SortedDepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, len(start))
for i, v := range start {
frontier[i] = &vertexAtDepth{
Vertex: v,
Depth: 0,
}
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
// Visit targets of this in a consistent order.
targets := AsVertexList(g.downEdgesNoCopy(current.Vertex))
sort.Sort(byVertexName(targets))
for _, t := range targets {
frontier = append(frontier, &vertexAtDepth{
Vertex: t,
Depth: current.Depth + 1,
})
}
}
return nil
}
// ReverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
// the vertices in start.
// The algorithm used here does not do a complete topological sort. To ensure
// correct overall ordering run TransitiveReduction first.
func (g *AcyclicGraph) ReverseDepthFirstWalk(start Set, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, 0, len(start))
for _, v := range start {
frontier = append(frontier, &vertexAtDepth{
Vertex: v,
Depth: 0,
})
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
for _, t := range g.upEdgesNoCopy(current.Vertex) {
frontier = append(frontier, &vertexAtDepth{
Vertex: t,
Depth: current.Depth + 1,
})
}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
}
return nil
}
// SortedReverseDepthFirstWalk does a depth-first walk _up_ the graph starting from
// the vertices in start, always iterating the nodes in a consistent order.
func (g *AcyclicGraph) SortedReverseDepthFirstWalk(start []Vertex, f DepthWalkFunc) error {
seen := make(map[Vertex]struct{})
frontier := make([]*vertexAtDepth, len(start))
for i, v := range start {
frontier[i] = &vertexAtDepth{
Vertex: v,
Depth: 0,
}
}
for len(frontier) > 0 {
// Pop the current vertex
n := len(frontier)
current := frontier[n-1]
frontier = frontier[:n-1]
// Check if we've seen this already and return...
if _, ok := seen[current.Vertex]; ok {
continue
}
seen[current.Vertex] = struct{}{}
// Add next set of targets in a consistent order.
targets := AsVertexList(g.upEdgesNoCopy(current.Vertex))
sort.Sort(byVertexName(targets))
for _, t := range targets {
frontier = append(frontier, &vertexAtDepth{
Vertex: t,
Depth: current.Depth + 1,
})
}
// Visit the current node
if err := f(current.Vertex, current.Depth); err != nil {
return err
}
}
return nil
}
// byVertexName implements sort.Interface so a list of Vertices can be sorted
// consistently by their VertexName
type byVertexName []Vertex
func (b byVertexName) Len() int { return len(b) }
func (b byVertexName) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
func (b byVertexName) Less(i, j int) bool {
return VertexName(b[i]) < VertexName(b[j])
}