-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathnodes_controlnet_aux.py
492 lines (371 loc) · 15.8 KB
/
nodes_controlnet_aux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import os
import numpy as np
import torch
from bizyair.common.env_var import BIZYAIR_SERVER_ADDRESS
from .utils import (
decode_and_deserialize,
get_api_key,
send_post_request,
serialize_and_encode,
)
# Sync with theoritical limit from Comfy base
# https://github.com/comfyanonymous/ComfyUI/blob/eecd69b53a896343775bcb02a4f8349e7442ffd1/nodes.py#L45
MAX_RESOLUTION = 1024
class BasePreprocessor:
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
if not hasattr(cls, "model_name"):
raise TypeError("Subclass must define 'model_name'")
cls.API_URL = f"{BIZYAIR_SERVER_ADDRESS}{cls.model_name}"
cls.CATEGORY = f"☁️BizyAir/{cls.CATEGORY}"
@staticmethod
def get_headers():
return {
"accept": "application/json",
"content-type": "application/json",
"authorization": f"Bearer {get_api_key()}",
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(self, **kwargs):
compress = True
image: torch.Tensor = kwargs.pop("image")
device = image.device
kwargs["image"] = serialize_and_encode(image, compress)[0]
kwargs["is_compress"] = compress
response: str = send_post_request(
self.API_URL, payload=kwargs, headers=self.get_headers()
)
image_np = decode_and_deserialize(response)
image_torch = torch.from_numpy(image_np).to(device)
return (image_torch,)
def create_node_input_types(**extra_kwargs):
return {
"required": {"image": ("IMAGE",)},
"optional": {
**extra_kwargs,
"resolution": (
"INT",
{
"default": 512,
"min": 64,
"max": MAX_RESOLUTION,
"step": 64,
"display": "number",
},
), # Cosmetic only: display as "number" or "slider"})
},
}
class PiDiNetPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxpidinetpreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
safe=(["enable", "disable"], {"default": "enable"})
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
class ColorPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxcolorpreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/T2IAdapter-only"
class CannyEdgePreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxcannyedgepreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
low_threshold=("INT", {"default": 100, "min": 0, "max": 255, "step": 1}),
high_threshold=("INT", {"default": 200, "min": 0, "max": 255, "step": 1}),
)
CATEGORY = "ControlNet Preprocessors/Line Extractors"
class SAMPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxsampreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
class BinaryPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxbinarypreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
bin_threshold=("INT", {"default": 100, "min": 0, "max": 255, "step": 1})
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
class ScribblePreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxscribblepreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
safe=(["enable", "disable"], {"default": "enable"})
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
class M_LSDPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxm-lsdpreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
score_threshold=(
"FLOAT",
{"default": 0.1, "min": 0.01, "max": 2.0, "step": 0.01},
),
dist_threshold=(
"FLOAT",
{"default": 0.1, "min": 0.01, "max": 20.0, "step": 0.01},
),
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
class UniFormer_SemSegPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxuniformer-semsegpreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
RETURN_TYPES = ("IMAGE",)
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
class Zoe_DepthMapPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxzoe-depthmappreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
class MiDaS_NormalMapPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxmidas-normalmappreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
a=(
"FLOAT",
{"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.05},
),
bg_threshold=("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.05}),
)
RETURN_TYPES = ("IMAGE",)
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
class MiDaS_DepthMapPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxmidas-depthmappreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
a=(
"FLOAT",
{"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.05},
),
bg_threshold=("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.05}),
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
class OpenposePreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxopenposepreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
detect_hand=(["enable", "disable"], {"default": "enable"}),
detect_body=(["enable", "disable"], {"default": "enable"}),
detect_face=(["enable", "disable"], {"default": "enable"}),
)
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
class LineArtPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxlineartpreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
coarse=(["disable", "enable"], {"default": "disable"})
)
CATEGORY = "ControlNet Preprocessors/Line Extractors"
class LeReS_DepthMapPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxleres-depthmappreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
rm_nearest=("FLOAT", {"default": 0.0, "min": 0.0, "max": 100, "step": 0.1}),
rm_background=(
"FLOAT",
{"default": 0.0, "min": 0.0, "max": 100, "step": 0.1},
),
boost=(["enable", "disable"], {"default": "disable"}),
)
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
class BAE_NormalMapPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxbae-normalmappreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
class OneFormer_COCO_SemSegPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxoneformer-coco-semsegpreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
RETURN_TYPES = ("IMAGE",)
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
class OneFormer_ADE20K_SemSegPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxoneformer-ade20k-semsegpreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types()
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
class HEDPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxhedpreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
safe=(["enable", "disable"], {"default": "enable"})
)
CATEGORY = "ControlNet Preprocessors/Line Extractors"
class FakeScribblePreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxfakescribblepreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
safe=(["enable", "disable"], {"default": "enable"})
)
CATEGORY = "ControlNet Preprocessors/Line Extractors"
class TilePreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxtilepreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
pyrUp_iters=("INT", {"default": 3, "min": 1, "max": 10, "step": 1})
)
CATEGORY = "ControlNet Preprocessors/tile"
class DepthAnythingV2Preprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxdepthanythingv2preprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
ckpt_name=(
[
"depth_anything_v2_vitg.pth",
"depth_anything_v2_vitl.pth",
"depth_anything_v2_vitb.pth",
"depth_anything_v2_vits.pth",
],
{"default": "depth_anything_v2_vitl.pth"},
)
)
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
class Metric3D_DepthMapPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxmetric3d-depthmappreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
backbone=(
["vit-small", "vit-large", "vit-giant2"],
{"default": "vit-small"},
),
fx=("INT", {"default": 1000, "min": 1, "max": MAX_RESOLUTION}),
fy=("INT", {"default": 1000, "min": 1, "max": MAX_RESOLUTION}),
)
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
class Metric3D_NormalMapPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxmetric3d-normalmappreprocessor"
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
backbone=(
["vit-small", "vit-large", "vit-giant2"],
{"default": "vit-small"},
),
fx=("INT", {"default": 1000, "min": 1, "max": MAX_RESOLUTION}),
fy=("INT", {"default": 1000, "min": 1, "max": MAX_RESOLUTION}),
)
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
class DWPreprocessor(BasePreprocessor):
model_name = "/supernode/controlnetauxdwpreprocessor"
@classmethod
def INPUT_TYPES(s):
input_types = create_node_input_types(
detect_hand=(["enable", "disable"], {"default": "enable"}),
detect_body=(["enable", "disable"], {"default": "enable"}),
detect_face=(["enable", "disable"], {"default": "enable"}),
)
input_types["optional"] = {
**input_types["optional"],
"bbox_detector": (
[
"yolox_l.torchscript.pt",
"yolox_l.onnx",
"yolo_nas_l_fp16.onnx",
"yolo_nas_m_fp16.onnx",
"yolo_nas_s_fp16.onnx",
],
{"default": "yolox_l.onnx"},
),
"pose_estimator": (
[
"dw-ll_ucoco_384_bs5.torchscript.pt",
"dw-ll_ucoco_384.onnx",
"dw-ll_ucoco.onnx",
],
{"default": "dw-ll_ucoco_384_bs5.torchscript.pt"},
),
}
return input_types
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
NODE_CLASS_MAPPINGS = {
"BizyAirPiDiNetPreprocessor": PiDiNetPreprocessor,
"BizyAirColorPreprocessor": ColorPreprocessor,
"BizyAirCannyEdgePreprocessor": CannyEdgePreprocessor,
"BizyAirSAMPreprocessor": SAMPreprocessor,
"BizyAirBinaryPreprocessor": BinaryPreprocessor,
"BizyAirScribblePreprocessor": ScribblePreprocessor,
"BizyAirM_LSDPreprocessor": M_LSDPreprocessor,
"BizyAirUniFormer_SemSegPreprocessor": UniFormer_SemSegPreprocessor,
"BizyAirZoe_DepthMapPreprocessor": Zoe_DepthMapPreprocessor,
"BizyAirMiDaS_NormalMapPreprocessor": MiDaS_NormalMapPreprocessor,
"BizyAirMiDaS_DepthMapPreprocessor": MiDaS_DepthMapPreprocessor,
"BizyAirOpenposePreprocessor": OpenposePreprocessor,
"BizyAirLineArtPreprocessor": LineArtPreprocessor,
"BizyAirLeReS_DepthMapPreprocessor": LeReS_DepthMapPreprocessor,
"BizyAirBAE_NormalMapPreprocessor": BAE_NormalMapPreprocessor,
"BizyAirOneFormer_COCO_SemSegPreprocessor": OneFormer_COCO_SemSegPreprocessor,
"BizyAirOneFormer_ADE20K_SemSegPreprocessor": OneFormer_ADE20K_SemSegPreprocessor,
"BizyAirHEDPreprocessor": HEDPreprocessor,
"BizyAirFakeScribblePreprocessor": FakeScribblePreprocessor,
"BizyAirTilePreprocessor": TilePreprocessor,
"BizyAirDepthAnythingV2Preprocessor": DepthAnythingV2Preprocessor,
"BizyAirMetric3D_DepthMapPreprocessor": Metric3D_DepthMapPreprocessor,
"BizyAirMetric3D_NormalMapPreprocessor": Metric3D_NormalMapPreprocessor,
"BizyAirDWPreprocessor": DWPreprocessor,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"BizyAirPiDiNetPreprocessor": "☁️BizyAir PiDiNet Soft-Edge Lines",
"BizyAirColorPreprocessor": "☁️BizyAir Color Pallete",
"BizyAirCannyEdgePreprocessor": "☁️BizyAir Canny Edge",
"BizyAirSAMPreprocessor": "☁️BizyAir SAM Segmentor",
"BizyAirBinaryPreprocessor": "☁️BizyAir Binary Lines",
"BizyAirScribblePreprocessor": "☁️BizyAir Scribble Lines",
"BizyAirM_LSDPreprocessor": "☁️BizyAir M-LSD Lines",
"BizyAirUniFormer_SemSegPreprocessor": "☁️BizyAir UniFormer Segmentor",
"BizyAirZoe_DepthMapPreprocessor": "☁️BizyAir Zoe Depth Map",
"BizyAirMiDaS_NormalMapPreprocessor": "☁️BizyAir MiDaS Normal Map",
"BizyAirMiDaS_DepthMapPreprocessor": "☁️BizyAir MiDaS Depth Map",
"BizyAirOpenposePreprocessor": "☁️BizyAir OpenPose Pose",
"BizyAirLineArtPreprocessor": "☁️BizyAir Realistic Lineart",
"BizyAirLeReS_DepthMapPreprocessor": "☁️BizyAir LeReS Depth Map (enable boost for leres++)",
"BizyAirBAE_NormalMapPreprocessor": "☁️BizyAir BAE Normal Map",
"BizyAirOneFormer_COCO_SemSegPreprocessor": "☁️BizyAir OneFormer COCO Segmentor",
"BizyAirOneFormer_ADE20K_SemSegPreprocessor": "☁️BizyAir OneFormer ADE20K Segmentor",
"BizyAirHEDPreprocessor": "☁️BizyAir HED Soft-Edge Lines",
"BizyAirFakeScribblePreprocessor": "☁️BizyAir Fake Scribble Lines (aka scribble_hed)",
"BizyAirTilePreprocessor": "☁️BizyAir Tile",
"BizyAirDepthAnythingV2Preprocessor": "☁️BizyAir Depth Anything V2 - Relative",
"BizyAirMetric3D_DepthMapPreprocessor": "☁️BizyAir Metric3D Depth Map",
"BizyAirMetric3D_NormalMapPreprocessor": "☁️BizyAir Metric3D Normal Map",
"BizyAirDWPreprocessor": "☁️BizyAir DWPose Estimator",
}