You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
libibverbs not available, ibv_fork_init skipped
Collecting environment information...
PyTorch version: 2.4.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.4
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-3.10.0-957.27.2.el7.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A10
Nvidia driver version: 470.82.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
Your current environment information
libibverbs not available, ibv_fork_init skipped
Collecting environment information...
PyTorch version: 2.4.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OneFlow version: path: ['/opt/py3/lib/python3.10/site-packages/oneflow'], version: 0.9.1.dev20241121+cu122, git_commit: cbb0a3e, cmake_build_type: Release, rdma: True, mlir: True, enterprise: False
Nexfort version: none
OneDiff version: 1.2.1.dev28
OneDiffX version: 1.2.1.dev28+g424c81a8
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.4
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-3.10.0-957.27.2.el7.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A10
Nvidia driver version: 470.82.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-3
Off-line CPU(s) list: 4-15
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
Stepping: 6
BogoMIPS: 5800.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc eagerfpu pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 arat avx512vbmi avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq spec_ctrl intel_stibp arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 384 KiB (8 instances)
L1i cache: 256 KiB (8 instances)
L2 cache: 10 MiB (8 instances)
L3 cache: 48 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-15
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; Load fences, __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB
Versions of relevant libraries:
[pip3] diffusers==0.31.0
[pip3] numpy==1.26.4
[pip3] onnx==1.16.1
[pip3] onnxruntime==1.20.0
[pip3] torch==2.4.0+cu124
[pip3] torchao==0.6.1
[pip3] torchaudio==2.4.0+cu124
[pip3] torchvision==0.19.0+cu124
[pip3] transformers==4.27.1
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==3.0.0
[pip3] tritonclient==2.50.0
[conda] Could not collect
🐛 Describe the bug
针对使用peft的unet进行编译会生图错误
unet = get_peft_model(unet, lora_config)
unet.load_adapter(LCM_path, adapter_name="default")
unet.merge_and_unload()
from onediff.infer_compiler import oneflow_compile
unet = oneflow_compile(unet)
The text was updated successfully, but these errors were encountered: