-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathpreprocessing.py
108 lines (96 loc) · 6.17 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import glob
import multiprocessing as mp
import numpy as np
import os
from PIL import Image
import statistics
import sys
TRAINING_SET_PATH = 'data/train/'
DATASET_SUBFOLDERS = range(0, 15)
IMAGE_NEW_WIDTH = 256
IMAGE_NEW_HEIGHT = 192
def create_intensity_images_from_rgb_images_folder(path, subfolder):
print("create intensity is called")
for filename in glob.iglob(path + str(subfolder) + '/*/photo/*', recursive=True):
# don't duplicate intensity images
if not filename.endswith("_intensity.jpg"):
img = Image.open(filename).convert('L')
image_name_without_extension = filename.split('.')[0]
intensity_image_name = image_name_without_extension + '_intensity.jpg'
print(intensity_image_name)
img.save(intensity_image_name)
def resize_intensity_images(path, new_width, new_height, subfolder):
for filename in glob.iglob(path + str(subfolder) + '/*/photo/*_intensity.jpg', recursive=True):
print(filename)
img = Image.open(filename)
resized_image = img.resize((new_width, new_height))
image_name_without_extension = filename.split('.')[0]
resized_intensity_image_name = image_name_without_extension + '_resized.jpg'
resized_image.save(resized_intensity_image_name, "JPEG", optimize=True)
# remove the original intensity image
os.remove(filename)
def scale_depth(image, average):
for i in [0, len(image)-1]:
image[i] = average / (average + image[i])
def normalize_depth_values(path, subfolder):
for filename in glob.iglob(path + str(subfolder) + '/*/depth/*[0-9].png', recursive=True):
print(filename)
img = Image.open(filename)
size = img.size
image_values = img.histogram()
average_depth = statistics.mean(image_values)
if average_depth is 0:
average_depth = 0.000001
scale_depth(image_values, average_depth)
image_array = np.array(image_values, dtype=np.float32)
image = Image.new("L", size)
image.putdata(image_array)
normalized_image_name = filename.split('.')[0] + '_normalized.png'
image.save(normalized_image_name, "PNG", optimize=True)
def remove_normalized_depth_images(path):
for filename in glob.iglob(path + '**/*/depth/*_normalized.png', recursive=True):
os.remove(filename)
def remove_intensity_images(path):
for filename in glob.iglob(path + '**/*/photo/*_intensity.jpg', recursive=True):
os.remove(filename)
for filename in glob.iglob(path + '**/*/photo/*_resized.jpg', recursive=True):
os.remove(filename)
if __name__ == '__main__':
pool = mp.Pool(mp.cpu_count())
# if no args are passed, don't alter images
if len(sys.argv) is 1:
print("You should specify resizing (r) or converting to intensity (i).")
elif len(sys.argv) is 2:
if str(sys.argv[1]) is "i":
[pool.apply(create_intensity_images_from_rgb_images_folder, args=(TRAINING_SET_PATH, subfolder)) for subfolder in DATASET_SUBFOLDERS]
elif str(sys.argv[1]) is "r":
[pool.apply(resize_intensity_images, args=(TRAINING_SET_PATH, IMAGE_NEW_WIDTH, IMAGE_NEW_HEIGHT, subfolder)) for subfolder in DATASET_SUBFOLDERS]
elif str(sys.argv[1]) is "n":
[pool.apply(normalize_depth_values, args=(TRAINING_SET_PATH, subfolder)) for subfolder in DATASET_SUBFOLDERS]
else:
print("Invalid argument: use 'i' for convert images to intensity images, 'r' to resize the intensity images, 'n' for depth normalization or any combination of them")
elif len(sys.argv) is 3:
if (str(sys.argv[1]) is "i" and str(sys.argv[2]) is "r") or (str(sys.argv[2]) is "i" and str(sys.argv[1]) is "r"):
[pool.apply(create_intensity_images_from_rgb_images_folder, args=(TRAINING_SET_PATH, subfolder)) for subfolder in DATASET_SUBFOLDERS]
[pool.apply(resize_intensity_images, args=(TRAINING_SET_PATH, IMAGE_NEW_WIDTH, IMAGE_NEW_HEIGHT, subfolder)) for subfolder in DATASET_SUBFOLDERS]
elif (str(sys.argv[1]) is "i" and str(sys.argv[2]) is "n") or (str(sys.argv[1]) is "n" and str(sys.argv[2]) is "i"):
[pool.apply(create_intensity_images_from_rgb_images_folder, args=(TRAINING_SET_PATH, subfolder)) for subfolder in DATASET_SUBFOLDERS]
[pool.apply(normalize_depth_values, args=(TRAINING_SET_PATH, subfolder)) for subfolder in DATASET_SUBFOLDERS]
elif (str(sys.argv[1]) is "r" and str(sys.argv[2]) is "n") or (str(sys.argv[1]) is "n" and str(sys.argv[2]) is "r"):
[pool.apply(resize_intensity_images, args=(TRAINING_SET_PATH, IMAGE_NEW_WIDTH, IMAGE_NEW_HEIGHT, subfolder)) for subfolder in DATASET_SUBFOLDERS]
[pool.apply(normalize_depth_values, args=(TRAINING_SET_PATH, subfolder)) for subfolder in DATASET_SUBFOLDERS]
else:
print("Invalid arguments: use 'i' for convert images to intensity images, 'r' to resize the intensity images, 'n' for depth normalization or any combination of them")
elif len(sys.argv) is 4:
if ((str(sys.argv[1]) is "i" and str(sys.argv[2]) is "r" and str(sys.argv[3]) is "n") or
(str(sys.argv[1]) is "i" and str(sys.argv[2]) is "n" and str(sys.argv[3]) is "r") or
(str(sys.argv[1]) is "r" and str(sys.argv[2]) is "i" and str(sys.argv[3]) is "n") or
(str(sys.argv[1]) is "r" and str(sys.argv[2]) is "n" and str(sys.argv[3]) is "i") or
(str(sys.argv[1]) is "n" and str(sys.argv[2]) is "i" and str(sys.argv[3]) is "r") or
(str(sys.argv[1]) is "n" and str(sys.argv[2]) is "r" and str(sys.argv[3]) is "i")):
[pool.apply(create_intensity_images_from_rgb_images_folder, args=(TRAINING_SET_PATH, subfolder)) for subfolder in DATASET_SUBFOLDERS]
[pool.apply(resize_intensity_images, args=(TRAINING_SET_PATH, IMAGE_NEW_WIDTH, IMAGE_NEW_HEIGHT, subfolder)) for subfolder in DATASET_SUBFOLDERS]
[pool.apply(normalize_depth_values, args=(TRAINING_SET_PATH, subfolder)) for subfolder in DATASET_SUBFOLDERS]
else:
print("Too many arguments: use 'i' for convert images to intensity images, 'r' to resize the intensity images, 'n' for depth normalization or any combination of them")
pool.close()